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ABSTRACT 

 
Day-to-day Communication with verbally and hearing impaired people has been very limited 

due to lack of knowledge of sign languages among the general public. It is compounded due 

to the multiple systems of sign language going around, with no universally accepted standard. 

There is a need to bridge this communication gap in order to bring the specially abled into the 

mainstream. This project aims at the realisation of a system for interconversion of Indian sign 

language and speech. The system will be able to capture images of people gesturing various 

signs and return speech equivalents and vice versa. It aims to leverage computer vision and 

Deep learning algorithms to be able to learn features in order to distinguish between the 

different sign images and speech files.  

 

Sign language is a system of communication using visual gestures and signs, as used by deaf 

and dumb people. 

There are various types of sign language like ISL (Indian Sign Language), ASL (American 

Sign Language), BSL (British Sign Language), etc. We have created an integrated system that 

converts Indian Sign Language into Speech and vice versa. We have first captured and 

recognized speech using neural networks and converted into visual representations of its sign 

language. 

Along the course of the project, we built and tested our systems for 2D sign images, RGB and 

depth images obtained using Microsoft Kinect sensor, on hindi digits speech data with varying 

levels of noise. We were able to train a gesture to speech system for 48 words (10 numbers, 

alphabets, common words) with a train/test accuracy of 97%/71%. We also trained a hindi digit 

speech recognition system that performed with an accuracy of 96%. 
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INTRODUCTION 

Sign language is a system of communication used by deaf and dumb people. There are various 

types of sign language like ISL (Indian Sign Language), ASL (American Sign Language), BSL 

(British Sign Language), etc. But none of the sign languages are universal or international. It is 

impossible to communicate with the specially abled people without sign language. Since most 

people don’t know the sign language, there is a need for a medium that enables real time 

communication with impaired people. 

Sign languages  use manual communication to convey meaning. This can include simultaneously 

employing hand gestures, movement, orientation of the fingers, arms or body, and facial 

expressions to convey the ideas of a speaker. Sign languages have a lot of similarity to their spoken 

language, such as American Sign Language (ASL) with American English. Wherever 

communities of deaf people exist, sign languages have developed, and are at the cores of local deaf 

cultures. Although signing is used primarily by the deaf and hard of hearing, it is also used by 

hearing individuals, such as those unable to physically speak, or those who have trouble with 

spoken language due to a disability or condition. 

Indian Sign Language (ISL) is the predominant sign language in South Asia, used by at least 

several hundred specially abled people.  ISL alphabets derived from British Sign Language and 

French Sign Language alphabets. Unlike its American counterpart which uses one hand, ISL uses 

both hands to represent alphabets. 

 

Fig 1: American Sign Language    Fig 2: Indian Sign Language 

https://en.wikipedia.org/wiki/Facial_expressions
https://en.wikipedia.org/wiki/Facial_expressions
https://en.wikipedia.org/wiki/American_Sign_Language
https://en.wikipedia.org/wiki/American_English
https://en.wikipedia.org/wiki/Deaf
https://en.wikipedia.org/wiki/Deaf_culture
https://en.wikipedia.org/wiki/Deaf_culture
https://en.wikipedia.org/wiki/Hearing_loss
https://en.wikipedia.org/wiki/Sign_language
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PROCESS FLOW 

 
Fig 3: Process Flow 

SPEECH TO GESTURE 

 

 

Speech Data

Feature Extraction

(MFCC)

Training Neural Network

(MLP,RBFNN)

Text to Gesture Conversion
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SPEECH RECOGNITION 

Automatic speech recognition consists of identifying what the speaker says based on the 

utterance. It can be classified into two types: Text Dependent Speech Recognition and Text 

Independent Speech Recognition. In text dependent systems, we use a predefined utterance to train 

as well as test the system. Text Independent systems have no constraint on their speech content. 

The utterances used for testing are independent of those used for training. The basic approach for 

designing a text dependent speech recognition system includes preparing a suitable database for 

training and testing the system, extracting features from the different speech samples, followed by 

the feature classification step.  

The two most common techniques for feature extraction are LPC – Linear Predictive Coding 

and MFCC- Mel-Frequency Cepstral Coefficients. LPC parameters depend on speech production 

and are a linear combination of past values while MFCC depends on human hearing perception. 

Feature extraction is an important step which gives the specific information contained in the speech 

signal. These features depend on various parameters such as intensity, frequency, zero crossing 

rate, level crossing rate, etc. and also on the age of the speaker, gender, accent, speaking rate, 

dimensions of the vocal tract and environmental conditions.  

Feature classification includes dividing the data in the category which it belongs to. The various 

models/algorithms that can be used for classification include Hidden Markov Model, Gaussian 

Mixture Model, Self Organising Maps, Neural Networks, etc.  

SPEECH DATASET 

The database we used for training and testing our automatic speaker recognition system included 

Hindi Digit (0-9) samples by 50 different speakers. Each digit was spoken 10 times, thus making 

the number of utterances by each speaker, 100 and the total number of utterances, 5000. The 

database consisted of clean data and noisy data with the noise levels varying from -5dB, 0dB, 5dB, 

10dB, 20dB and 30dB.  
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  MFCC FEATURE EXTRACTION 

The first step in any automatic speech recognition system is to extract features i.e. identify the 

components of the audio signal that are good for identifying the linguistic content and discarding 

all the other stuff which carries information like background noise, emotion etc. 

STEPS 

1. Pre-emphasis - The speech signal s(n) is sent to a high-pass filter: 

s2(n) = s(n) - a*s(n-1) 

where s2(n) is the output signal and the value of a is usually between 0.9 and 1.0.  

The z-transform of the filter is : H(z)=1-a*z-1 

The goal of pre-emphasis is to compensate the high-frequency part that was suppressed during the 

sound production mechanism of humans. Moreover, it can also amplify the importance of high-

frequency formants. 

2. Framing - The input speech signal is segmented into frames of 20~30 ms with optional overlap 

of 1/3~1/2 of the frame size. The speech data is considered stationary for the duration of the frame. 

If the frame size is too small, we won’t be able to extract useful features, if the size is too large, 

the speech signal will be non- stationary. 

3. Windowing - Each frame has to be multiplied with a hamming window in order to keep the 

continuity of the first and the last points in the frame. If the signal in a frame is denoted by s(n), n 

= 0,…N-1, then the signal after Hamming windowing is s(n)*w(n), where w(n) is the Hamming 

window defined by: 

w(n, a) = (1 - a) - a cos(2pn/(N-1))，0≦n≦N-1 

4. Fast Fourier Transform or FFT - Spectral analysis shows that different timbres in speech 

signals corresponds to different energy distribution over frequencies. Therefore we usually 

perform FFT to obtain the magnitude frequency response of each frame. 

When we perform FFT on a frame, we assume that the signal within a frame is periodic, and 

continuous when wrapping around. 
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5. Mel Filter Bank - In this step, the above calculated spectrums are mapped on Mel scale to 

know the approximation about the existing energy at each spot with the help of Triangular 

overlapping window also known as triangular filter bank. These filter bank is a set of band pass 

filters having spacing along with bandwidth decided by steady Mel frequency time. During the 

mapping, when a given frequency value is up to 1000Hz the Mel-frequency scaling is linear 

frequency spacing, but after 1000Hz the spacing is logarithmic. The formula to convert frequency 

f hertz into Mel mf is given by Eq 

 

 

 

 Fig 4: Mel Scale 

 

6. Discrete Cosine Transform or DCT - This process of carrying out DCT is done in order 

to convert the log Mel spectrum back into the spatial domain. For this transformation either DFT 

or DCT both can be used for calculating Coefficients from the given log Mel spectrum as they 

divide a given sequence of finite length data into discrete vector. The output after applying DCT 

is known as MFCC (Mel Frequency Cepstrum Coefficient 
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where Cn represents the MFCC and m is the number of the coefficients here m=13 so, total number 

of coefficients extracted from each frame is 13. 

Thus, with the help of Filter bank with proper spacing done by Mel scaling it becomes easy to get 

the estimation about the energies at each spot and once this energies are estimated then the log of 

these energies also known as Mel spectrum can be used for calculating first 13 coefficients using 

DCT. Since, the increasing numbers of coefficients represent faster change in the estimated 

energies and thus have less information to be used for classifying the given images. Hence, first 

13 coefficients are calculated using DCT and higher are discarded which give a sequence of 

acoustic feature vectors. 

NEURAL NETWORKS 

WHAT IS A NEURAL NETWORK? 

An artificial neural network is a programmed computational model that aims to replicate the neural 

structure and functioning of the human brain.ANNs are processing devices (algorithms or actual 

hardware) that are loosely modeled after the neuronal structure of the mamalian cerebral cortex 

but on much smaller scales. A large ANN might have hundreds or thousands of processor units, 

whereas a mamalian brain has billions of neurons with a corresponding increase in magnitude of 

their overall interaction and emergent behavior.  

 

Fig 5: Neuron 

 

 

https://www.elprocus.com/wp-content/uploads/2014/06/6-29-2014-3-46-15-AM.jpg
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ARCHITECTURE OF NEURAL NETWORKS 

1. Feed-forward networks 

Feed-forward ANNs (figure 1) allow signals to travel one way only; from input to output. There 

is no feedback (loops) i.e. the output of any layer does not affect that same layer. Feed-forward 

ANNs tend to be straight forward networks that associate inputs with outputs. They are extensively 

used in pattern recognition. This type of organisation is also referred to as bottom-up or top-down. 

2. Feedback networks 

Feedback networks can have signals travelling in both directions by introducing loops in the 

network. Feedback networks are very powerful and can get extremely complicated. Feedback 

networks are dynamic; their 'state' is changing continuously until they reach an equilibrium point. 

They remain at the equilibrium point until the input changes and a new equilibrium needs to be 

found. Feedback architectures are also referred to as interactive or recurrent, although the latter 

term is often used to denote feedback connections in single-layer organisations.  

 

 

Fig 6 : An example of a simple feedforward network 

 

 

 

 

 



10 
 

3. Network layers 

The commonest type of artificial neural network consists of three groups, or layers, of units: a 

layer of "input" units is connected to a layer of "hidden" units, which is connected to a layer 

of "output" units. (see Figure 4.1) 

- The activity of the input units represents the raw information that is fed into the network. 

- The activity of each hidden unit is determined by the activities of the input units and the weights 

on the connections between the input and the hidden units. 

- The behaviour of the output units depends on the activity of the hidden units and the weights 

between the hidden and output units.  

This simple type of network is interesting because the hidden units are free to construct their own 

representations of the input. The weights between the input and hidden units determine when each 

hidden unit is active, and so by modifying these weights, a hidden unit can choose what it 

represents. 

We also distinguish single-layer and multi-layer architectures. The single-layer organisation, in 

which all units are connected to one another, constitutes the most general case and is of more 

potential computational power than hierarchically structured multi-layer organisations. In multi-

layer networks, units are often numbered by layer, instead of following a global numbering. 

4. Perceptrons 

The perceptron turns out to be an MCP model (neuron with weighted inputs) with some additional, 

fixed, preprocessing. Units labelled A1, A2, Aj , Ap are called association units and their task is 

to extract specific, localised features from the input images. Perceptrons mimic the basic idea 

behind the mammalian visual system. They were mainly used in pattern recognition even though 

their capabilities extended a lot more. 
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Fig 7: Perceptron 

TYPES OF NEURAL NETWORKS 

   1.      FEEDFORWARD NEURAL NETWORK 

The simplest of all neural networks, the feedforward neural network, moves information 

in one direction only. Data moves from the input nodes to the output nodes, passing through 

hidden nodes (if any). The feedforward neural network has no cycles or loops in its 

network. 

2.     RADIAL BASIS FUNCTION NEURAL NETWORK 

The RBF neural network is the first choice when interpolating in a multidimensional space. 

The RBF neural network is a highly intuitive neural network. Each neuron in the RBF 

neural network stores an example from the training set as a “prototype”. Linearity involved 

in the functioning of this neural network offers RBF the advantage of not suffering from 

local minima. 

3.     KOHONEN SELF-ORGANIZING NEURAL NETWORK 

Invented by Teuvo Kohonen, the self-organizing neural network is ideal for the 

visualization of low-dimensional views of high-dimensional data. The self-organizing 

neural network is different from other neural networks and applies competitive learning to 

a set of input data, as opposed to error-correction learning applied by other neural networks. 
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The Kohonen self-organizing neural network is known for performing functions on 

unlabeled data to describe hidden structures in it. 

4.     RECURRENT NEURAL NETWORK 

The recurrent neural network, unlike the feedforward neural network, is a neural network 

that allows for a bi-directional flow of data. The network between the connected units 

forms a directed cycle. Such a network allows for dynamic temporal behavior to be 

exhibited. The recurrent neural network is capable of using its internal memory to process 

arbitrary sequence of inputs. This neural network is a popular choice for tasks such as 

handwriting and speech recognition. 

5.     MODULAR NEURAL NETWORKS 

This interesting neural network comprises of a series of independent neural networks that 

are moderated by an intermediary. Each of these independent neural networks works with 

separate inputs, accomplishing subtasks that make up the task the network as whole hopes 

to perform. The intermediary accepts the inputs of each of these individual neural networks, 

processes them, and creates the final output for the modular neural network. The 

independent neural networks do not interact with each other. 

6.     PHYSICAL NEURAL NETWORK 

This neural network aims to emphasize the reliance on physical hardware as opposed to 

software alone when simulating a neural network. An electrically adjustable resistance 

material is used for emulating the function of a neural synapse. While the physical 

hardware emulates the neurons, the software emulates the neural network. 

 

 

 

 

 

 

mailto:?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=0ahUKEwjyw8ng0NrRAhWjJMAKHdr7DmoQFggmMAI&url=http%3A%2F%2Fandrew.gibiansky.com%2Fblog%2Fmachine-learning%2Fspeech-recognition-neural-networks%2F&usg=AFQjCNE
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NEURAL NETWORKS USED FOR CLASSIFICATION 

We have used the following neural networks for Speaker Recognition and provided a comparative 

study of their performance : 

A. Single Layer Feedforward Network (SLFN) 

 In this architecture there are three layers of neurons. Each neuron applies a nonlinear activation 

function to its input to generate its output except the neuron in the first layer which just acts as 

interface between the network and its environment. The output of the last layer is compared to that 

of required result and the error between them is obtained. This error is then reduced by using 

backpropagation iteratively on the training data. The trained model is used to classify unseen data 

to its proper class. 

 

B. Probabilistic Neural Network (PNN) 

A PNN learns by approximating the probability distribution function of training dataset. The 

closeness of input data is compared with all the training neurons and the data is classified into the 

category with maximum closeness.  

 

C. Deep Neural Network (DNN) 

The Deep Neural Network architecture used in this study is a 4-layer perceptron . By definition 

any neural network architecture that has more than one hidden layer is a DNN.  It has a similar 

working principle to that of a 3-layer perceptron and uses the same method for reducing error. The 

advantage of an additional layer is that it is better at non-linear separation and has better noise 

tolerance. DNNs, though, are very computationally intensive and data hungry.  

 

D. Radial Basis Function Neural Network  (RBFNN) 

Radial Basis Function Neural Network is based on the principle of Cover’s theorem which states 

that a complex pattern classification problem when casted into a higher dimensional space 

nonlinearly, is more likely to be separable than in a low-dimensional space. In the most basic form 

it is a three-layer network with the following function: 

First layer acts as an interface between the network and the environment i.e. it accepts the input 

data. Second layer is the only hidden layer and is used to map the input space to higher dimensional 
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space through a nonlinear transformation. Gaussian functions, multi-quadrics, inverse-multi 

quadrics etc. can be used for the same. Third Layer gives the output of the network which is then 

compared to required output to obtain error. This error is then reduced to requisite level iteratively, 

using Least Mean Square algorithm to train the network. 

 

 

 

Fig 8: RBFNN Architecture 

 

 

TABLE I.  ACCURACY OF SPEAKER RECOGNITION USING SLFN 

Number 

of 

Speakers 

Clean 

Data 

Noisy Data 

  -5dB 0dB 5dB 10dB 20dB 30dB 

50 92.18 76.81 84.86 88.92 91.096 92.352 92.24 

40 94.53 76.95 86.54 90.57 92.66 94.15 94.81 

20 96.56 82.85 89.35 92.62 94.31 95.24 95.73 

10 98.8 90.68 95.64 94.76 97.64 98.44 99.08 

 

 

 

 

 

http://chrisjmccormick.files.wordpress.com/2013/08/architecture_simple2.png


15 
 

TABLE II.  ACCURACY OF SPEAKER RECOGNITION USING PNN 

Number 

of 

Speakers 

Clean 

Data 
Noisy Data 

  -5dB 0dB 5dB 10dB 20dB 30dB 

50 96.096 31.47 51.72 71.44 85.99 95.23 95.76 

40 97.2 34.07 54.02 73.82 86.85 95.73 97.13 

20 97.82 44.32 62.54 78.68 90.84 96.61 97.72 

10 99.2 59.48 73.28 75.32 96.36 99.08 99.24 

 

TABLE III.  ACCURACY OF SPEAKER RECOGNITION USING DNN 

Number 

of 

Speakers 

Clean 

Data 
Noisy Data 

  -5dB 0dB 5dB 10dB 20dB 30dB 

50 86.07 61.26 72.87 80.87 85.6 87.00 87.90 

40 89.37 60.34 66.87 82.13 83.87 87.79 89.03 

20 96.13 78.90 87.85 91.33 94.28 95.34 96.01 

10 98.6 90.12 95.60 95.56 98.16 98.6 98.72 

 

 

TABLE IV.  ACCURACY OF SPEAKER RECOGNITION USING RBFNN 

Number 

of 

Speakers 

Clean 

Data 

Noisy Data 

  -5dB 0dB 5dB 10dB 20dB 30dB 

50 96.22 85.76 89.62 92.71 94.44 95.84 96.29 

40 97.19 87.44 90.72 93.18 95.15 96.96 97.23 

20 97.47 89.36 92.11 94.39 95.96 97.52 97.99 

10 98.8 91.46 94.4 94.72 97.64 98.64 98.74 
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Fig 9: Accuracy Vs SNR (in dB) for 10 speakers 

 

Fig 10: Accuracy Vs SNR (in dB) for 20 speakers 

 

Fig 11: Accuracy Vs SNR (in dB) for 40 speakers 
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Fig 12: Accuracy Vs SNR (in dB) for 50 speakers 

 

 

RESULTS AND DISCUSSIONS 

    We found out the MFCC features of each utterance using the MIR Toolbox in MATLAB. The 

features were vectors of length 13 each. We used these vectors to train all the four neural networks 

for speaker recognition for 10, 20, 40 and 50 speakers respectively, on both clean and noisy data. 

The accuracy obtained for all four neural networks has been tabulated below. Assuming SNR of 

clean data to be 40dB (Pspeech = 10000 Pnoise), a comparison of performances of all four neural 

networks for different number of speakers is also shown as plots of Accuracy vs SNR (in dB). As 

can be inferred, the overall performance of RBFNN was the most consistent for all noise levels, 

while DNN learnt more complex features and, provided more data, should trump RBFNN in terms 

of accuracy. PNN on the other hand, was the fastest to train and compute, although it requires more 

memory and shows the largest fluctuations in accuracy with varying levels of noise. 
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GESTURE TO SPEECH 

 

 

 

GESTURE RECOGNITION ON 2D IMAGES 

As the starting and before the availability of Kinect sensor, we worked on gesture recognition 

using modified VGG (Visual Graphics Group) network and achieved an accuracy of 99 %. 

We used a dataset of 7000 2D pictures (100 x 100 RGB images) all taken in different gradient 

plain background and for further testing 350 unseen images were used. 

Images were sign language equivalent of 0-9 and A-Z. 

The concept of transfer learning was used where we used weights pre-trained on Imagenet data 

set. This was done in order to save the unnecessarily large training time needed in training from 

scratch and instead using the weights of a network pre-trained on a huge number of objects. 

The weights of the first 10 layers were kept non-trainable as these layers anyway compute generic 

fundamental features like edges, shapes etc., and the rest were fine-tuned with respect to our own 

data. Thus allowing us the luxury of using a dense architecture such as VGG net without having 

to train it from scratch. 

Fully connected layers of original VGG net were modified to custom layers (3) with 4096,512 and 

36 neurons in each respectively. 

Segmentation

Feature Extraction

(RGB-D images)

Training Neural Network

(CNN, VGGNet)

Text to Speech Conversion
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CONVOLUTIONAL NEURAL NETWORK 

In machine learning, a convolutional neural network (CNN, or ConvNet) is a class of deep, feed-

forward artificial neural networks that has successfully been applied to analyzing visual imagery. 

CNNs use a variation of multilayer perceptrons designed to require minimal preprocessing. They 

are also known as shift invariant or space invariant artificial neural networks (SIANN), based on 

their shared-weights architecture and translation invariance characteristics.  

CNNs use relatively little pre-processing compared to other image classification algorithms. This 

means that the network learns the filters that in traditional algorithms were hand-engineered. This 

independence from prior knowledge and human effort in feature design is a major advantage. 

They have applications in image and video recognition, recommender systems and natural 

language processing.  

A Convolutional Neural Network (CNN) is comprised of one or more convolutional layers (often 

with a subsampling step) and then followed by one or more fully connected layers as in a 

standard multilayer neural network. This is achieved with local connections and tied weights 

followed by some form of pooling which results in translation invariant features. Another benefit 

of CNNs is that they are easier to train and have many fewer parameters than fully connected 

networks with the same number of hidden units.  

A CNN architecture is formed by a stack of distinct layers that transform the input volume into an 

output volume (e.g. holding the class scores) through a differentiable function. A few distinct types 

of layers are commonly used. We discuss them further below: 

 

Fig 13: Neurons of a convolutional layer (blue), connected to their receptive field (red) 

 

 

 

 

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Multilayer_perceptron
https://en.wikipedia.org/wiki/Data_pre-processing
https://en.wikipedia.org/wiki/Translation_invariance
https://en.wikipedia.org/wiki/Image_classification
https://en.wikipedia.org/wiki/Filter_(signal_processing)
https://en.wikipedia.org/wiki/Feature_engineering
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Recommender_system
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Natural_language_processing
http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks
https://en.wikipedia.org/wiki/File:Conv_layer.png
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I.Convolutional layer 

The convolutional layer is the core building block of a CNN. The layer's parameters consist of a 

set of learnable filters (or kernels), which have a small receptive field, but extend through the full 

depth of the input volume. During the forward pass, each filter is convolved across the width and 

height of the input volume, computing the dot product between the entries of the filter and the 

input and producing a 2-dimensional activation map of that filter. As a result, the network learns 

filters that activate when it detects some specific type of feature at some spatial position in the 

input. 

Stacking the activation maps for all filters along the depth dimension forms the full output volume 

of the convolution layer. Every entry in the output volume can thus also be interpreted as an output 

of a neuron that looks at a small region in the input and shares parameters with neurons in the same 

activation map. 

I. Pooling layer 

Fig 14: Pooling Layer 

Max pooling with a 2x2 filter and stride = 2 

Another important concept of CNNs is pooling, which is a form of non-linear down-sampling. 

There are several non-linear functions to implement pooling among which max pooling is the most 

common. It partitions the input image into a set of non-overlapping rectangles and, for each such 

sub-region, outputs the maximum. The intuition is that the exact location of a feature is less 

important than its rough location relative to other features. The pooling layer serves to 

progressively reduce the spatial size of the representation, to reduce the number of parameters and 

amount of computation in the network, and hence to also control overfitting.  

 

 

 

https://en.wikipedia.org/wiki/Kernel_(image_processing)
https://en.wikipedia.org/wiki/Dot_product
https://en.wikipedia.org/wiki/Overfitting
https://en.wikipedia.org/wiki/File:Max_pooling.png
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II.    ReLU layer 

ReLU is the abbreviation of Rectified Linear Units. This layer applies the non-saturating activation 

function . It increases the nonlinear properties of the decision function and of the overall network 

without affecting the receptive fields of the convolution layer. 

Other functions are also used to increase nonlinearity, for example the saturating hyperbolic 

tangent , and the sigmoid function . ReLU is often preferred to other functions, because it trains 

the neural network several times faster without a significant penalty to generalisation accuracy. 

III. Fully connected layer 

Finally, after several convolutional and max pooling layers, the high-level reasoning in the neural 

network is done via fully connected layers. Neurons in a fully connected layer have connections 

to all activations in the previous layer, as seen in regular neural networks. Their activations can 

hence be computed with a matrix multiplication followed by a bias offset. 

IV. Loss layer 

The loss layer specifies how training penalizes the deviation between the predicted and true labels 

and is normally the final layer. Various loss functions appropriate for different tasks may be used 

there. Softmax loss is used for predicting a single class of K mutually exclusive 

classes. Sigmoid cross-entropy loss is used for predicting K independent probability values 

in  Euclidean loss is used for regressing to real-valued labels . 

 

     ARCHITECTURE OF VGG NETWORK USED 

 
Fig 15: VGGNet 

 

https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Hyperbolic_tangent
https://en.wikipedia.org/wiki/Hyperbolic_tangent
https://en.wikipedia.org/wiki/Sigmoid_function
https://en.wikipedia.org/wiki/Softmax_function
https://en.wikipedia.org/wiki/Sigmoid_function
https://en.wikipedia.org/wiki/Cross_entropy
https://en.wikipedia.org/wiki/Euclidean_distance
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TRANSFER LEARNING 

Transfer learning is a machine learning method where a model developed for a task is reused as 

the starting point for a model on a second task. 

It is a popular approach in deep learning where pre-trained models are used as the starting point 

on computer vision and natural language processing tasks given the vast compute and time 

resources required to develop neural network models on these problems and from the huge jumps 

in skill that they provide on related problems. 

Transfer learning is a machine learning technique where a model trained on one task is re-purposed 

on a second related task. 

Transfer learning is an optimization that allows rapid progress or improved performance when 

modeling the second task. 

Transfer learning is related to problems such as multi-task learning and concept drift and is not 

exclusively an area of study for deep learning. 

Nevertheless, transfer learning is popular in deep learning given the enormous resources required 

to train deep learning models or the large and challenging datasets on which deep learning models 

are trained. 

Transfer learning only works in deep learning if the model features learned from the first task are 

general. 

How to Use Transfer Learning? 

You can use transfer learning on your own predictive modeling problems. 

Two common approaches are as follows: 

1. Develop Model Approach 

2. Pre-trained Model Approach 
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Develop Model Approach 

1. Select Source Task. You must select a related predictive modeling problem with an 

abundance of data where there is some relationship in the input data, output data, and/or 

concepts learned during the mapping from input to output data. 

2. Develop Source Model. Next, you must develop a skillful model for this first task. The 

model must be better than a naive model to ensure that some feature learning has been 

performed. 

3. Reuse Model. The model fit on the source task can then be used as the starting point for a 

model on the second task of interest. This may involve using all or parts of the model, 

depending on the modeling technique used. 

4. Tune Model. Optionally, the model may need to be adapted or refined on the input-output 

pair data available for the task of interest. 

Pre-trained Model Approach 

1. Select Source Model. A pre-trained source model is chosen from available models. Many 

research institutions release models on large and challenging datasets that may be included 

in the pool of candidate models from which to choose from. 

2. Reuse Model. The model pre-trained model can then be used as the starting point for a 

model on the second task of interest. This may involve using all or parts of the model, 

depending on the modeling technique used. 

3. Tune Model. Optionally, the model may need to be adapted or refined on the input-output 

pair data available for the task of interest. 

This second type of transfer learning is common in the field of deep learning. 

Transfer Learning with Image Data 

It is common to perform transfer learning with predictive modeling problems that use image data 

as input. 

This may be a prediction task that takes photographs or video data as input. 
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For these types of problems, it is common to use a deep learning model pre-trained for a large and 

challenging image classification task such as the ImageNet 1000-class photograph classification 

competition. 

The research organizations that develop models for this competition and do well often release their 

final model under a permissive license for reuse. These models can take days or weeks to train on 

modern hardware. 

These models can be downloaded and incorporated directly into new models that expect image 

data as input. 

Three examples of models of this type include: 

 Oxford VGG Model 

 Google Inception Model 

 Microsoft ResNet Model 

VGGNET (Visual Graphics Group Network) 

It is a 16 or 19 layer deep convolutional neural network that can be used for complex 

classification task. 

V. VGG16 and VGG19 

 

Figure 16: A visualization of the VGG architecture. 

 

http://www.image-net.org/
http://www.robots.ox.ac.uk/~vgg/research/very_deep/
https://github.com/tensorflow/models/tree/master/inception
https://github.com/KaimingHe/deep-residual-networks
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The VGG network architecture was introduced by Simonyan and Zisserman in their 2014 paper. 

This network is characterized by its simplicity, using only 3×3 convolutional layers stacked on 

top of each other in increasing depth. Reducing volume size is handled by max pooling. Two 

fully-connected layers, each with 4,096 nodes are then followed by a softmax classifier. 

The “16” and “19” stand for the number of weight layers in the network : 

 

Fig 17: Layer Architecture of VGGNet 

 

In 2014, 16 and 19 layer networks were considered very deep (although we now have the ResNet 

architecture which can be successfully trained at depths of 50-200 for ImageNet and over 1,000 

for CIFAR-10). 

Simonyan and Zisserman found training VGG16 and VGG19 challenging (specifically regarding 

convergence on the deeper networks), so in order to make training easier, they first 

trained smaller versions of VGG with less weight layers (columns A and C) first. 
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The smaller networks converged and were then used as initializations for the larger, deeper 

networks — this process is called pre-training. 

While making logical sense, pre-training is a very time consuming, tedious task, requiring 

an entire network to be trained before it can serve as an initialization for a deeper network. 

We no longer use pre-training (in most cases) and instead prefer Xaiver/Glorot initialization or 

MSRA initialization (sometimes called He et al. initialization from the paper.  Unfortunately, 

there are two major drawbacks with VGGNet: 

1. It is painfully slow to train. 

2. The network architecture weights themselves are quite large (in terms of disk/bandwidth). 

Due to its depth and number of fully-connected nodes, VGG is over 533MB for VGG16 and 

574MB for VGG19. This makes deploying VGG a tiresome task. 

We still use VGG in many deep learning image classification problems; however, smaller 

network architectures are often more desirable (such as SqueezeNet, GoogLeNet, etc.). 

 

MODEL ACCURACY & LOSS PLOT OF THE                           

TRAINED VGG NETWORK   

 
Fig 18 : Model Accuracy of trained VGG Netwrok 
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Fig 19: Loss plot of the trained VGG Network 

 

WORKING ON RGB-D IMAGES USING KINECT 

RGB vs RGB-D images : 

A RGB-D image is simply a combination of a RGB image and its corresponding depth image. A 

depth image is an image channel in which each pixel relates to a distance between the image plane 

and the corresponding object in the RGB image. 

You can use Kinect to capture such RGB-D images. If the use of Kinect-like hardware is not 

available in your task, you may need to estimate the depth from images of the same scene taken 

from multiple cameras, coming down to a computer vision problem. Another solution is to collect 

training data containing RGB-D images and to use machine learning techniques. 

Why Kinect? 

We decided to use Kinect Sensor in order to accommodate more complex backgrounds that we 

could come across in everyday situation instead of the simple backgrounds as in 2-D dataset. 
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Also, since Indian sign language is two handed, we need to count in the occlusion of one hand by 

the other as well as different relative positions of both hands, and Kinect with its depth rendering 

capacity should help to improve performance in such cases. 

Microsoft Kinect Sensor 

Recent advances in 3D depth cameras such as Microsoft Kinect sensors have created many 

opportunities for multimedia computing. Kinect was built to revolutionize the way people play 

games and how they experience entertainment. With Kinect, people are able to interact with the 

games with their body in a natural way. The key enabling technology is human body language 

understanding; the computer must first understand what a user is doing before it can respond. This 

has always been an active research field in computer vision, but it has proven formidably difficult 

with video cameras. 

 The Kinect sensor lets the computer directly sense the third dimension (depth) of the players and 

the environment, making the task much easier. It also understands when users talk, knows who 

they are when they walk up to it, and can interpret their movements and translate them into a 

format that developers can use to build new experiences. Kinect’s impact has extended far beyond 

the gaming industry. With its wide availability and low cost, many researchers and practitioners 

in computer science, electronic engineering, and robotics are leveraging the sensing technology to 

develop creative new ways to interact with machines and to perform other tasks, from helping 

children with autism to assisting doctors in operating rooms. Microsoft calls this the Kinect Effect.  

    

   Fig 20: Kinect Sensor 
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 Fig 21: Kinect sensor with Specifications 

The innovative technology behind Kinect is a combination of hardware and software contained 

within the Kinect sensor accessory that can be added to any existing Xbox 360. The Kinect sensor 

is a flat black box that sits on a small platform, placed on a table or shelf near the television you're 

using with your Xbox 360. Newer Xbox 360s have a Kinect port from which the device can draw 

power, but the Kinect sensor comes with a power supply at no additional charge for users of older 

Xbox 360 models. For a video game to use the features of the hardware, it must also use the 

proprietary layer of Kinect software that enables body and voice recognition from the Kinect 

sensor.There's a trio of hardware innovations working together within the Kinect sensor: 

 Color VGA video camera - This video camera aids in facial recognition and other 

detection features by detecting three color components: red, green and blue. Microsoft calls 

this an "RGB camera" referring to the color components it detects. 

 Depth sensor - An infrared projector and a monochrome CMOS (complimentary metal-

oxide semiconductor) sensor work together to "see" the room in 3-D regardless of the 

lighting conditions. 

 Multi-array microphone - This is an array of four microphones that can isolate the voices 

of the players from the noise in the room. This allows the player to be a few feet away from 

the microphone and still use voice controls. 

https://electronics.howstuffworks.com/xbox-three-sixty.htm
https://electronics.howstuffworks.com/gadgets/high-tech-gadgets/speech-recognition.htm
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Fig 22 Kinect Specifications 

SKIN DETECTION 

Skin detection is the process of finding skin-coloured pixels and regions in an image or a video. 

This process is typically used as a pre-processing step to find regions that potentially have human 

faces and limbs in images. Skin image recognition is used in a wide range of image processing 

applications like face recognition, skin disease detection, gesture tracking and human-computer 

interaction. The primary key for skin recognition from an image is the skin colour. But colour 

cannot be the only deciding factor due to the variation in skin tone according to different races. 

Other factors such as the light conditions also affect the results. Therefore, the skin tone is often 

combined with other cues like texture and edge features. This is achieved by breaking down the 

image into individual pixels and classifying them into skin coloured and non-skin coloured. One 
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simple method is to check if each skin pixel falls into a defined colour range or values in some 

coordinates of a colour space. There are many skin colour spaces like RGB, HSV, YCbCr, YIQ, 

YUV, etc. that are used for skin colour segmentation. The following factors should be considered 

for determining the threshold range: 

 Effect of illumination depending on the surroundings.  

 Individual characteristics such as age, sex and body parts. 

 Varying skin tone with respect to different races.  

 Other factors such as background colours, shadows and motion blur.  

The skin detection is influenced by the parameters like Brightness, Contrast, Transparency, 

Illumination, and Saturation. The detection is normally optimized by taking into consideration 

combinations of the mentioned parameters in their ideal ranges. 

 

Fig 23: Skin Segmentation 

HSV COLOUR MODEL 

Hue Saturation Value (HSV) Colour Model The HSV colour space is more intuitive to how people 

experience colour than the RGB colour space. As hue (H) varies from 0 to 1.0, the corresponding 

colours vary from red, through yellow, green, cyan, blue, and magenta, back to red. As 

saturation(S) varies from 0 to 1.0, the corresponding colours (hues) vary from unsaturated (shades 

of grey) to fully saturated (no white component). As value (V), or brightness, varies from 0 to 1.0, 

the corresponding colours become increasingly brighter. The hue component in HSV is in the 

range 0° to 360° angle all lying around a hexagon. With RGB the colour will have values like (0.5, 

0.5, 0.25), whereas for HSV it will be (30°, √3/4, 0.5). HSV is best used when a user is selecting 

a colour interactively It is usually much easier for a user to get to a desired colour as compared to 

using RGB. 
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Fig 24:HSV Model 

We trained a Gaussian Probability Model using the HSV values of skin pixels AS VARIABLES. 

When any pixel (viz the HSV values of the pixel) is fed into this model, it outputs the probability 

of that pixel being skin or non skin.  

Formula for Multivariate Gaussian Mixture Model : 

 

After having trained the GMM on RGB images, in order to further improve the skin segmentation 

procedure by reducing the number of false positives, such as those in background etc., we used the 

depth information of the depth images. Here we found out the regions closest to the camera using 

the intensity of depth image pixels by thresholding. Now, only those pixels that were among the 

intersection of both the GMM predicted pixels and the depth thresholded pixels were classified as 

being skin pixel. 

Although, we weren’t concerned with the accuracy of the skin segmentation model, as this was 

not our specific problem statement, but it performed admirably well for our use case as you can 

see from the several results below. The skin segmentation was performed in order to reinforce the 

skin regions in the RGB and depth image before being passed on to the Deep neural networks for 

classification in order to improve the accuracy. Reinforcement or emphasizing was done as 

necessary on both the RGB and depth images. For example, the skin pixel regions were further 

darkened in the depth images for ease of classification. 
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DATA 

 

We collected RGB-D data for different Indian Signs. The Kinect based RGB-D data was made 

for around 48 different entities. These include both RGB and Depth images of digits, alphabets 

and a few common words. The dataset comprises of around 36 images per word in our 

vocabulary, contributed by 18 different people. The vocabulary is as given below: 

 

 

 0  L 

 1  M 

 2  N 

 3  O 

 4  P 

 5  Q 

 6  R 

 7  S 

 8  T 

 9  U 

 10  V 

 A  W 

 B  X 

 C  Y 

 D  Z 

 E  HELP 

 F  HOW 

 G  IT 

 H  ME 

 I  NEGATIVE 

 K  OKAY 
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 SOME  PRAY 

 GOOD  HERE 

 STUDY  YOU 

 WORK  UP 

 Table : List of Vocabulary 

 

 

  

Fig 25 : Few instances from our dataset 

As mentioned above, only 36 images were recorded for each gesture which would not have been 

enough for training our deep learning models and learning all the variances. To address this 

problem, we came up with a workaround in the form of data augmentation.  
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      DATA AUGMENTATION 

Data augmentation refers to the process of multiplying data points in order to increase the training 

data size by employing various techniques to the already available data such as blurring, cropping, 

scaling, translating, rotating, etc. It is an important step to boost the performance of deep neural 

networks especially in cases where the data available is limited.  

Data augmentation adds value to base data by adding information derived from internal and 

external sources within an enterprise. Data is one of the core assets for an enterprise, making data 

management essential. Data augmentation can be applied to any form of data, in our case, images. 

We augmented our data to six times its original size by applying various spatial transformations 

like translation, cropping, etc. thereby ending up with around 200 images per word in our 

vocabulary. We performed augmentation using the imgaug library in python. We ensured that the 

same transformations were applied to both the RGB and Depth components of the images to 

maintain concurrency between them. 

Fig 26: Data Augmentation 
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APPROACH FOR GESTURE RECOGNITION 

WITH RGB-D DATA 

ResNet 

Unlike traditional sequential network architectures such as AlexNet, OverFeat, and VGG, ResNet 

is instead a form of “exotic architecture” that relies on micro-architecture modules (also called 

“network-in-network architectures”). 

First introduced by He et al. in their 2015 paper, Deep Residual Learning for Image Recognition, 

the ResNet architecture has become a seminal work, demonstrating that extremely deep networks 

can be trained using standard SGD (and a reasonable initialization function) through the use of 

residual modules. 

 

Fig 27: Basic Residual Network. 

Intuition behind Residual Networks 

Make it deep, but remain shallow 

Given a shallower network - how can we take it, add extra layers and make it deeper - without 

losing accuracy or increasing error? It’s tricky to do but one insight is that if the extra layers 

added to the deeper network are identity mappings, they become equivalent to the shallower 

network. And hence, they should produce no higher training error than its shallower counterpart. 

This is called a solution by construction by the authors. 
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Understanding residual 

A residual is the error in a result. 

Let’s say, you are asked to predict the age of a person, just by looking at her. If her actual age 

is 20, and you predict 18, you are off by 2. 2 is our residual here. If you had predicted 21, you 

would have been off by -1, our residual in this case. In essence, residual is what you should have 

added to your prediction to match the actual. 

What is important to understand here is that, if the residual is 0, we are not supposed to do 

anything to the prediction. We are to remain silent since the prediction already matched the 

actual. 

THE RESIDUAL NETWORK 

So we want a deeper network where: 

 We want to go deeper without degradation in accuracy and error rate. We can do this via 

injecting identity mappings. 

 We want to be able to learn the residuals so that our predictions are close to the actuals. 

 

That’s what the Residual Network does. This is realized by feedforward neural network 

with shortcut connections. As the paper says: 

Shortcut connections are those skipping one or more layers. In our case, the shortcut connections 

simply perform identity mapping, and their outputs are added to the outputs of the stacked layers. 

Identity shortcut connections add neither extra parameter nor computational complexity. The 

entire network can still be trained end-to-end by SGD with backpropagation, and can be easily 

implemented using common libraries without modifying the solvers. 

The network can be mathematically depicted as: 

H(x) = F(x) + x, where F(x) = W2*relu(W1*x+b1)+b2 

During training period, the residual network learns the weights of its layers such that if the 

identity mapping were optimal, all the weights get set to 0. In effect F(x) become 0, as in x gets 

directly mapped to H(x) and no corrections need to be made. Hence these become your identity 

mappings which help grow the network deep. And if there is a deviation from optimal identity 

mapping, weights and biases of F(x) are learned to adjust for it. Think of F(x) as learning how to 

adjust our predictions to match the actuals. These networks are stacked together to arrive at a 

deep network architecture.  
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OUR APPROACH 

 
As part of our initial approach, we trained a Residual Network (RESNET) on RGB and Depth 

images stacked vertically over each other. The residual network has 50 layers. The stacked images 

were resized into 224*224 images before being passed on to the network for classification. 

 
 
Fig 28: Using Resnet and RGBD image for sign language detection 

 

 

Fig 29: Performance of ResNet 50 on RGBD  data 
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Fig 30:  Loss Plot of ResNet 50 on RGBD  data 

 

We found at that ResNet 50 architecture gave 97.8%  training accuracy and 71% validation 

accuracy . 
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BILINEAR CNN 

 

Our Bilinear CNN architecture: 

 

 

Fig 31:Bilinear CNN for RGBD image classification 

 

Stacking the RGB and depth image and passing it through a ResNet model had its own 

shortcoming. Due to stacking of the images and reducing it 24*224*3 images a lot of 

information is lost. Also because of a single network handles both image RGB and depth, it has 

to find a compromising solution that converges for both the image hence not providing the best 

possible accuracy. 

To deal with above stated issues we made use of Bilinear CNN. In this model we fed RGB image 

to one branch and Depth with another branch of the Bilinear model. These bottleneck features so 

obtained were then fed to densely connected neural network for classification. 

We observed that in Bilinear model Training accuracy was 98% and validation accuracy was 

79% on RGB image and for the Depth image training accuracy was 89% and validation accuracy 

was 63%. The mean accuracy by this model on test set was 84%. 
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One of the issue that was really concerning with respect to this model was getting inferences 

from this model was very expensive computationally. The size of the model itself was at around 

800 MB. Bilinear model would have been a better choice if we could manage to get good 

accuracy with a smaller size model. This would have been possible only if we have more data as 

we could have decreased number of layers for similar performance hence generating a smaller 

size Bilinear model. 

 

 

 

Fig 32: Performance of Bilinear CNN with ResNet 50 at one branch on RGB image. 
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Fig 33: Performance of Bilinear CNN with ResNet 50 at one branch on Depth image. 

 

 

 GOOGLE TEXT TO SPEECH (OR GOOGLE TTS): 

The sign language interpreted by our models generate output in terms of text. These texts are 

then converted to corresponding speech. To convert these texts to speech we use an API 

provided by Google called Google text to speech more popularly known as Google TTS. 
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CONCLUSION 

 Therefore, we were able to explore the possibilities in terms of potential of deep learning 

and computer vision in addressing the problem of sign language conversion to speech and 

vice versa which could have a major impact in enabling normal seamless communication 

between the differently abled people and the rest of the world without the complexity of 

having to learn the different sign languages. 

 Here are the major highlights of our project- 

 We trained and compared several different neural networks for Hindi digit speech 

recognition, with Radial Basis function neural network outperforming the rest with an 

accuracy of >96%. This was done on a dataset of around 5000 utterances by 50 different 

speakers each uttering every digit 10 time. We used this model to predict spoken audio and 

mapping them to corresponding signs. 

 We then proceeded to build our gesture to speech conversion subsystem. We trained our 

model on 2D images of various Indian sign language gestures taken in varying backgrounds 

and lighting conditions. The model used here was convolutional neural network, the 

architecture being VGG19. This model performed admirably well to classify the images 

into 34 classes (10 digits,24 alphabets) with an accuracy of 97%. We went ahead to build 

our Text to Speech(TTS) system on top of it for the complete gesture to speech conversion 

pipeline. 

 But this was not all, we wanted to go further ahead test the performance on more generic, 

real world data, also in order to see the effect of depth information given by kinect sensor 

on the accuracy and performance. For this we wanted to use Microsoft's proprietary Kinect 

sensor to capture both RGB and depth information and use both of them in training our 

deep learning models. 

 Hence, we created and recorded sign data images (RGB-D for 48 different entities) using 

the kinect sensor. There were about 36 images for each category contributed by 18 

individuals. Considering the complexity of the problem this was a very small dataset. 

Therefore we augmented our data to include variations, using operations like scaling, 

translation, cropping etc. randomly. This inflated our data to 6 times its original number. 

 After collection, there were two ways for us to approach the gesture to sign conversion on 

RGB-D data. One was to stack the RGB and its corresponding depth image vertically and 

passing it on to our CNN, which in this case was ResNet50,a deeper,50 layer architecture 

that can learn complex features, provided limited data. 

 This model had a training accuracy of 97% and validation accuracy of 71% on previously 

unseen data, which was a great performance considering the limited data and its realworld 

complexity. This goes to show the potential of our model, provided more data. Another 

positive inference was the size of the model, which was only about 100 MB which is small 

compared to industrial standard models. This size will be further lowered upon increasing 
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data that would lead to lesser parameters required hence making this model ideal for 

deployment even on mobile devices. 

 The second approach was borne out of our observation that due to stacking, we were losing 

a lot of information, than if we had separate models for both the RGB and Depth images. 

Also there was a compromise in terms of optimal weights for both of them that was being 

made. Hence we decided to test our hypothesis by building a homogenous bilinear CNN 

model where both RGB and Depth images were being fed to respective ResNets. The 

feature vectors then output by an intermediate layer were taken from both arrangements, 

concatenated and then sent to a linear classifier. 

 This resulted in significant improvement as we had expected as it achieved 84% accuracy. 

But there was a tradeoff to be made as the computation complexity of the models and hence 

the execution time were both compromised in a way that overshadowed the accuracy gain. 

This made it practically infeasible for it to be real-time. But at least we can agree on the 

impressive potential of this bilinear implementation which could perform well when we 

have the computational resources to handle the complexity. 

 Hence to conclude not only did we make a full Indian sign to speech interconversion system 

albeit for limited vocabulary, we also explored the different possibilities and potential 

improvements in the system. 
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FUTURE WORK 

 

 Generating sequence of signs directly from speech input without the need for 

intermediate conversion of speech to text. This can be done by taking various features 

extracted from speech data as input to train the neural network. 

 Extrapolating the system to support multiple languages and different sign language 

systems  . 

 Adding features like animated signing to make it more interactive.  

 We could add functionalities so that people can use it to learn sign languages (virtual sign 

language tutor).  

Work could be done to turn this into a compact little system that is easy to use and affordable 

and so on  
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