
Mini Project 4 Mishra, Chopra

Generative Adversarial Networks: Reproducibility Study
Nishant Mishra [260903177], Shubham Chopra [260903254] Group-40

Abstract

In this project, we study the 2014 pub-
lished paper Generative Adversarial Net-
works. We have tried to reproduce a sub-
set of the results obtained in the paper
and performed ablation studies to under-
stand the model’s robustness and evalu-
ate the importance of the various model
hyper-parameters. We also extended the
model to include newer features in order
to improve the model’s performance on the
featured datasets, by making changes to
the model’s internal structure, inspired by
more recent works in the field.

1. Introduction

Generative Adversarial Networks are the
central topic of discussion, and we attempt to
analyse them in detail in this report. Genera-
tive Adversarial Networks (GANs) were first de-
scribed in (1) and are based on the zero-sum
non-cooperative game, analysed thoroughly in
the field of Game Theory. Initially, we provide
some background and mathematical justification
of the main ideas behind GANs.

1.1. Preliminaries

1.1.1. Non-Cooperative Game Theory

A Non-Cooperative Game, in Game Theory
is a game which is modelled as a competition be-
tween individual players. This is opposed to Co-
operative Games, where a coalition probability
and joint actions are modelled. Non-cooperative
games are generally analysed through a frame-
work in Game Theory, which tries to predict
players’ individual strategies and payoffs and to
find (2). Cooperative Game Theory does not an-

alyze the strategic bargaining within each coali-
tion.

1.1.2. Nash Equilibrium

In Game Theory, the Nash Equilibrium, named
after the mathematician John Forbes Nash Jr.,
is the proposed solution of a non-cooperative
game involving two or more players in which each
player is assumed to know the optimal strategies
of the other players, and neither player has any-
thing to gain by changing only their own strategy.
Informally, a strategy profile is a Nash equilib-
rium, if no player can do better simply by uni-
laterally changing their own strategy.
If each player has chosen a strategy, and no
player can benefit by changing strategies while
the other players keep theirs unchanged, then
the current set of strategy choices and their cor-
responding payoffs constitutes a Nash equilib-
rium. In the context of Generative Adversarial
Networks, the GAN model converges when the
Discriminator and the Generator reach a Nash
Equilibrium.

1.1.3. Zero-Sum Game

A Zero-Sum Game, in Game Theory, is a
mathematical representation of a scenario mod-
elled such that each participant’s gain or loss of
utility is exactly balanced by the losses/gains of
the utility of the others. Zero-sum games are a
specific example of constant sum games where
the sum of each outcome is always zero. If the
total gains of the participants are added up and
the total losses are subtracted, they sum to zero.
Hence, if one wins, the others must lose by an
equal amount, collectively.
The Nash equilibrium for a two-player, zero-
sum game can be found by solving a linear pro-
gramming problem. Suppose a zero-sum game
has a payoff matrix M where element Mi,j is

Page 1



Mini Project 4 Mishra, Chopra

the payoff obtained when the minimizing player
chooses pure strategy i and the maximizing
player chooses pure strategy j. The game will
have at least one Nash equilibrium. The Nash
equilibrium can be found (Raghavan 1994) by
solving the linear program to find a vector u:
Minimize: ∑

i

ui

Subject to the Constraints:

u >= 0,Mu >= 1.

1.1.4. Generative Adversarial Networks

Generative Adversarial Networks (GANs)
are a class of machine learning systems, first de-
scribed in (1), usually modelled as a Zero-Sum
Game between a Discriminator (D) and a Gen-
erator(G). The framework where both D and G
networks are multilayer perceptrons, is referred
to as Adversarial Networks. The Generative
model is pitted against an adversary: a Discrim-
inative model that learns to determine whether
a sample is from the model/data distribution.
To learn the Generator’s distribution pg over
data x, a prior on input noise variables pz(z) is
defined, and then a mapping to data space is rep-
resented as G(z; θg), where G is a differentiable
function represented by a Multilayer Perceptron
with parameters θg. Also, the Discriminator is
defined as a second multilayer perceptron D(x;
θd) that outputs a single scalar. D(x) represents
the probability that x came from the data rather
than pg. Thus, D and G are set up to play the
following two-player Minimax Game with value
function V (G, D):

min

G

max

D
V (G,D) = Ex∼pdata(x)[logD(x)]

+Ez∼pz(z)[log(1 −D(G(z))].

Adversarial nets have the advantages that
Markov chains are never needed, only backprop-
agation is used to obtain gradients, no inference
is required during learning, and a wide variety
of factors and interactions can easily be incorpo-
rated into the model.

1.2. Relevant Work

Deep Boltzmann Machines (3) are Deep Gen-
erative Models that provide a parametric spec-
ification of a probability distribution function.
Generative machines are models that do not
explicitly represent the likelihood, yet are able
to generate samples from the desired distribu-
tion. Generative stochastic networks [4] are an
example of a generative machine that can be
trained with exact backpropagation. Kingma
and Welling (4) developed more general stochas-
tic backpropagation rules, allowing one to back-
propagate through Gaussian distributions with
finite variance, and to backpropagate to the co-
variance parameter as well as the mean. Also,
more recent work on DC-GANs (5), cGANS (6),
and LSGANs (7) extends the ideas of GANs by
introducing more advanced concepts.

2. Datasets

2.1. About the Datasets

The MNIST database (8) (Modified National
Institute of Standards and Technology database)
is a large database of handwritten digits. The
MNIST database, has a training set of 60,000
examples, and a test set of 10,000 examples. It
is a subset of a larger set available from NIST.
Each image has a size of 28 x 28. The digits have
been size-normalized and centered in a fixed-size
image.
The second dataset, The CIFAR-10 (9) dataset
(Canadian Institute For Advanced Research) is
a collection of images that are commonly used to
train machine learning and computer vision algo-
rithms. It contains 60,000 32 x 32 color images
in 10 different classes. The 10 different classes
represent airplanes, cars, birds, cats, deer, dogs,
frogs, horses, ships, and trucks. There are 6,000
images of each class.

2.2. Ethical Considerations

Generative Models, by definition actually gener-
ate new content. With the wide-spread attention
that GANs have received, State-of-the-Art mod-
els can already produce ”fake” results, includ-

Page 2



Mini Project 4 Mishra, Chopra

Figure 1: Random samples generated by GAN on MNIST data

ing, but not limited to realistic “media” (such
images, videos, music, and speech), that are in-
distinguishable from ”true” content to the naked
eye. Combined with the ability to generate this
”fake” data in large volumes with ease, it is im-
portant to consider who is tasked with deciding
and maintaining the integrity of such online con-
tent.

3. Paper Reproduction

The provided code was implemented using the
now obsolete Theano framework and using
python2, hence it was really difficult to reconfig-
ure and get it setup on our system. Nevertheless
we managed to hack the code and get it to ex-
ecute for the task of reproducing the results on
MNIST dataset but proceeded to use the much
more interpretable and relevant pytorch imple-
mentation for ablation studies and extension of
the model. The original paper trains the pre-
sented GAN network on the MNIST, CIFAR-10
and TFD images. However, the Toronto Faces
Database (TFD) is not accessible without per-
mission, and the provided code does not include
scripts for it. Hence, we do not reproduce their
results on the TFD database.

3.1. MNIST Results

We trained the GAN network, as described in
the paper with the same hyper-parameters, i.e.,
learning rates = 2e-5, momentum optimizers for
both the Discriminator and the Generator and k

value of 1, where k is the number of inner loops
steps applied to the Discriminator model. Both
the models are multi layer perceptrons. The
Generator Nets used a mixture of rectified lin-
ear activations (ReLU) and sigmoid activations,
while the Discriminator Net used Maxout activa-
tions. Dropout was applied in training the Dis-
criminator Net. The model was trained for 200
epochs and results recorded. In general, our re-
sults were comparable to the ones showed in the
paper, i.e., the Generator produced results that
in some cases were in-distinguishable from the
original images to the naked eye.Figure 1 shows
these generated Images. The images shown are
randomly sampled, as described in the paper.
Also, Figure 2 shows the Discriminator and Gen-
erator Loss curves, with respect to the number
of epochs.

3.2. CIFAR-10 Results

We tried the GAN network, as described in
the paper with the same hyper-parameters, i.e.,
learning rates = 2e-5, momentum optimizers for
both the Discriminator and the Generator, and
k value of 1. The Model is the same as described
in Section 3.1., the results obtained for CIFAR
10 were blurry and took a much longer time to
train. Figure 4 shows the generated images when
the model is reproduced on CIFAR-10 dataset.

Page 3



Mini Project 4 Mishra, Chopra

Figure 2: Discriminator and Generator loss plots of reproduced model for MNIST with given code

Figure 3: Generated samples by GAN reproduced using CIFAR-10 dataset

3.3. Analysis of the Reproduced Re-
sults with the Paper

The results obtained were very similar to the ones
obtained in the paper. MNIST was faster to con-
verge and gave decent quality images, but the
images were blurry in case of CIFAR-10, but so
were the results obtained in the original paper.
A Gaussian Parzen window based log likelihood
for the MNIST dataset was also estimated using
the given code and was found out to be 262.2.

4. Ablation Studies

4.1. Tuning Hyper-Parameters

GANs have been known to be unstable to train,
often resulting in generators that produce non-
sensical outputs. We decided to put this notion
to test by tuning some of the hyperparameters in-
volved in training the models. We experimented

with different Hyper-Parameter settings for the
model

4.1.1. Learning Rates

As part of our first experiment, we tuned the
learning rates of both Generator and Discrimi-
nator models. We increased the Learning rate
of the Generator to 3e-4 from 2e-4, while keep-
ing the learning rate of the Discriminator fixed.
Increasing the learning rate of the Generator,
caused it to oscillate and it failed to converge.
This led to the Discriminator loss reaching 0,
while the Generator’s loss function remained at
a high constant. This led to images generated
to be noisy and not feasible for acceptable fake
synthetic images. This trend was strikingly con-
sistent in the sense that, for the models to con-
verge the learning rates of both the models have
to be nearly similar and usually very small. This
observation follows well from the paper where

Page 4



Mini Project 4 Mishra, Chopra

Figure 4: Noisy samples generated due to model not converging on changing learning rate

Figure 5: Discriminator and Generator loss plots when model diverges

it is mentioned that the two models need to be
synchronized properly during training and that
the generator network should not be allowed to
update too much without updating D. Even in-
creasing the learning rate for the discriminator
lead to non convergence of the model. In Figure
4 we can see the noisy samples generated due
to divergence of the models due to changing the
learning rates. In Figure 5 we can see the plots of
generator and discriminator loss for the diverged
model, while the discriminator loss becomes zero,
the generator loss keeps increasing.

4.1.2. Loss Function

GANs usually use crossentropy loss function as
the adversarial loss, which basically calculates
the loss for both discriminator and the discrim-
inator output of generator. Since cross entropy
loss in general are classification losses, it is equiv-
alent to classifying whether the output of the

generator network is correctly classified by the
discriminator. We decided to experiment with
the L2 norm or Mean Squared error loss function.
The motivation behind this experiment was that
this L2 loss won’t just care about whether data
has been correctly labelled as in case of Binary
cross entropy loss but will penalize the model
based on how badly it is classified i.e how far the
sample is from the correct label This in general
gives more meaningful gradient information for
backpropagation and should lead to better qual-
ity images. This line of reasoning turns out to be
one of the significant motivation behind an ad-
vanced version of GANs called the Least Squared
Error GAN (LSGAN) (7), although it also fea-
tures other major new ideas such as weight decay
etc. The results obtained are as shown in Figure
6

Page 5



Mini Project 4 Mishra, Chopra

Figure 6: Random samples generated with MSE
loss function

Figure 7: random samples, a) showing the model
suffering from mode collapse b) after conver-
gence, with d=2.

4.1.3. D steps

The paper introduces another important hyper-
parameter d steps, the number of steps to apply
to the discriminator, which is basically the num-

ber of times the Discriminator is trained before
updating the Generators. This is motivated by
the proposition 2 mentioned in the paper that
states Proposition 2 which states
”If G and D have enough capacity, and at each
step of the training algorithm, the discriminator
is allowed to reach its optimum given G, and pg
is updated so as to improve the criterion then pg
converges to pdata.”
In the paper this parameter has been fixed to
d=1, since it is the most computationally effi-
cient. We decided to change this to 2 and observe
the results. In this setting, initially the model
suffered from mode collapse. A mode collapse
refers to a generator model that is only capable
of generating one or a small subset of different
outcomes, or modes. For the first 25-30 epochs
the model was only able to generate MNIST digit
1 as shown in the figure. But it later recovered
and converged faster to an optimum than it did
with d=1. The results obtained are as shown in
Figure 7, as we can see from the loss plot (Figure
10 in Appendix) the Discriminator loss fluctuates
heavily at the start denoting mode collapse be-
fore smoothing out towards the end.

4.2. Extensions of the Model

4.2.1. DCGAN

Deep Convolutional Generative Adversarial Net-
works (5) or DCGAN are a variation of GAN
where the vanilla GAN is upscaled using CNNs.
The DCGAN replaces the linear layers with con-
volutional layers and deterministic spatial pool-
ing functions (such as maxpooling) with strided
convolutions are replaced allowing the network to
learn its own spatial downsampling. We use this
approach in our generator, allowing it to learn its
own spatial upsampling, as well as discriminator.
After every convolutional layer, batch normaliza-
tion was added to the generator model to stabi-
lize learning by normalizing the input to each
unit to have zero mean and unit variance. This
helps deal with training problems that arise due
to poor initialization and helps gradient flow in
deeper models.// We tried this on the CIFAR-
10 and converged to much better results in lesser

Page 6



Mini Project 4 Mishra, Chopra

Figure 8: Random samples generated using DC-
GAN trained on CIFAR-10

epochs than with the MLP based implementa-
tion in the original code. We can see the gener-
ator output for the model trained on CIFAR-10
in Figure 8. The results are visibly better tahn
the ones we observed in section 3.2 using vanilla
GAN.

4.2.2. cGAN

We also implemented one of the extensions men-
tioned in the paper itself, that of a conditional
generative model by feeding in the output along
with the input to both generator and discrimi-
nator. This conditional Generative Adversarial
Network(cGAN) allows us to direct the genera-
tion process of the model by conditioning it on
certain features, here, the class labels. In the
generator the prior input noise pz(z), and y are
combined in joint hidden representation, and the
adversarial training framework allows for consid-
erable flexibility in how this hidden representa-
tion is composed. In the discriminator x and y
are presented as inputs and to a discriminative
function (embodied again by a MLP in this case).
The results are as shown in Figure 9

Figure 9: Generated Samples a) conditioned on
labels y= [5,4,5,8,7,5,3,0,7,8,8,9,9,5,2,2] b)
for y=0 to 9.

5. Conclusion and Discussion

From our experiments we conclude that Genera-
tive Adversarial Networks are indeed a very pow-
erful class of generative models and can be used
for a number of down stream tasks apart from
data generation. The generative and discrimi-
native models trained competitively boost each
other to be used as stand alone models for var-
ious tasks. GANs, however, still suffer from a
number of shortcomings. MOst notably they are
highly unstable to train, and therefore require
careful fine tuning of parameters. Not only this,
high quality GANs are also very computationally
expensive to . Newer developments in the field of
generative learning and further extensions to the
GAN model have been made to overcome these
disadvantages and add newer capabilities and are
consistently growing making it a hot topic of re-
search.

Page 7



Mini Project 4 Mishra, Chopra

6. Statement of Contributions

This project is a collaborative effort between
three team members. The tasks were evenly dis-
tributed and every member contributed equally.

References

[1] I. J. Goodfellow, J. Pouget-Abadie,
M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Genera-
tive adversarial networks,” arXiv preprint
arXiv:1406.2661, 2014. 1, 2

[2] J. F. Nash, “Equilibrium points in n-person
games,” Proceedings of the National Academy
of Sciences, vol. 36, no. 1, pp. 48–49, 1950. 1

[3] R. Salakhutdinov and G. Hinton, “Deep
boltzmann machines,” pp. 448–455, 2009. 2

[4] D. P. Kingma and M. Welling, “Auto-
encoding variational bayes,” arXiv preprint
arXiv:1312.6114, 2013. 2

[5] A. Radford, L. Metz, and S. Chintala,
“Unsupervised representation learning with
deep convolutional generative adversarial
networks,” arXiv preprint arXiv:1511.06434,
2015. 2, 6

[6] M. Mirza and S. Osindero, “Conditional
generative adversarial nets,” arXiv preprint
arXiv:1411.1784, 2014. 2

[7] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang,
and S. Paul Smolley, “Least squares genera-
tive adversarial networks,” in Proceedings of
the IEEE International Conference on Com-
puter Vision, pp. 2794–2802, 2017. 2, 5

[8] Y. LeCun, “The mnist database of
handwritten digits,” http://yann. lecun.
com/exdb/mnist/. 2

[9] A. Krizhevsky, V. Nair, and G. Hinton, “The
cifar-10 dataset,” online: http://www. cs.
toronto. edu/kriz/cifar. html, vol. 55, 2014.
2

Appendices

Loss Plots

Page 8



Mini Project 4 Mishra, Chopra

Figure 10: Discriminator and Generator loss plots with d=2

Figure 11: Discriminator and Generator loss plots with MSE loss function

Figure 12: Discriminator and Generator loss plots for cGAN

Page 9


	Appendices

