
Applied Machine Learning
October 21, 2019

Applied Machine Learning - Mini Project 2
Nishant Mishra, Shubham Chopra and Aarash Feizi

McGill University

Group 60

ABSTRACT

Aims. We analyze different Machine Learning models to process Reddit data and develop a supervised classification model that can
predict what community a certain comment came from.
Methods. We experimented numerous models with different configurations for this task. The models chosen were both simple models,
such as multi-class Naive Bayes and also pre-trained complex models, such as LSTMs. After fine-tuning the best performing models’
hyper-parameters, to further boost the classification accuracy, we combined their output, using the stacking technique. By doing so,
we were able to gain a higher accuracy compared to each model individually on the final validation data.
Results. The final stacked model was able to gain an accuracy of 60.5% on the validation data, and an accuracy of 60.077% on the
test data in the competition.

Key words. Natural Language Processing– Text classification – LSTM – ULMFiT – Naive Bayes – TF-IDF – Support Vector
Machines

1. Introduction

We analyze text from the website Reddit, and develop a multi-
label classification model to predict which subreddit (group) a
queried comment came from. Reddit is an online forum, where
people discuss various topics from sports to cartoons, technol-
ogy and video-games. The dataset is a list of comments from 20
different subreddits (groups/topics). This problem can be formu-
lated as a type of Sentiment analysis problem, which is quite
well-known in the Natural Language Processing (NLP) liter-
ature. Sentiment analysis is a computational approach toward
identifying opinion, sentiment, and subjectivity in text.

For this dataset, we implement a Bernoulli Naive Bayes
classifier, train and test it against the dataset. We also analyze
various different models for improving the classification accu-
racy, including Support Vector Machines, Logistic Regression,
k-Nearest Neighbours, the Ensemble method of Stacking and
a Deep Learning model ULMFiT (J.Howard and S.Ruder,
2018[1]).

We compare the accuracy of these models for different Fea-
ture extraction methods, namely Term Frequency-Inverse doc-
ument frequency (TF-IDF), Binary and Non-Binary Count Vec-
torizer. We also analyze the performance gain/loss after applying
Dimensionality reduction methods on the dataset. In particular,
we explore the Principle Component Analysis (PCA) inspired
method of Latent Semantic Analysis (LSA).

1.1. Preliminaries

1.1.1. Naive Bayes

Naive Bayes methods are a set of probabilistic supervised learn-
ing algorithms centered on applying the Bayes’ theorem with a
strong “naive” assumption of conditional independence between
every pair of features given the value of the class variable. Bayes’
theorem states that given class variable y and dependent feature

vector x1 through xn,

P(y | x1, .., xn) =
P(y)P(x1, .., xn | y)

P(x1, .., xn)

Using the naive conditional independence assumption that,

P(xi | y, x1, .., xi − 1, xi + 1, ..xn) = P(xi | y)

Since P(x1, .., xn) is constant given the input, we can use the
following classification rule,

P(y | x1, .., xn) ∝ P(y)
n∏

i=1

P(xi | y)

∝ log(P(y)) +

n∑
i=1

log(P(xi | y))

1.1.2. Multiclass Bernoulli Naive Bayes

For data that is distributed according to Multivariate Bernoulli
distributions we use this Naive Bayes algorithm; i.e., each fea-
ture is assumed to be a binary-valued variable. The Learning Pa-
rameters are,

θk = P(y = k) ; k = 1, 2, ..,K − 1

θ j,k = P(x j = 1 | y = k) ; k = 1, 2, ...,K

The Decision Rule for Multiclass Bernoulli Naive Bayes can be
given as,

P(y | x) = log(θk) +

m∑
j=1

x j log(θ j,k) + (1 − x j) log(1 − θ j,k)

Mini-Project 2, page 1 of 5

Mini-Project 2: Group 60

Fig. 1. Class Labels for the input DataSet.

Fig. 2. Token Per Comment Distribution.

Fig. 3. Number of tokens per each class.

2. Related Work

Kowsari et al.[12], compare the performance of various mod-
els for text classification, including Logistic Regression, Naïve
Bayes classifier, k-nearest Neighbor, Support Vector Machine,
Decision Tree, Boosting, Bagging, Conditional Random Field
(CRF), Random forest, and Deep Learning.

More recently, the community has been interested in Deep
Learning based approaches for NLP. (J.Howard and S.Ruder,
2018[1]) describe a transfer-learning based model ULMFiT,
where they propose a novel method to fine-tune a pre-trained
NLP model to suit a given Text Classification task. Liang et
al.[5], Zhang et al.[6], and Sun et al. [7] discuss novel deep
learning models for Aspect based Sentiment Analysis.

3. Dataset and Preparation

The given dataset is a collection of 70000 Reddit comments
(in English) that each belong to one of 20 different subbred-
dit categories: AskReddit, GlobalOffensive, Music, Overwatch,
Anime, Baseball, Canada, Conspiracy, Europe, Funny, Game of
Thrones, Hockey, League of Legends, Movies, NBA, NFL, Soc-
cer, Trees, World news, and WOW. First, we examined the bal-
ance between the number of comments per each class for clas-
sification, and as it can be seen in Figure 1, all subreddits have
exactly 3500 comments. Second, as shown in Figure 2, we plot-
ted the distribution of the number of words in each comment.

To preprocess the data, we cleaned the data by only keep-
ing the alphabetic characters, assuming there is no information
regarding the comment’s class in numbers and other charac-
ters. We omitted Stop-Words, eliminated too Frequently and In-
Frequently occurring words (different min_df and max_df pa-
rameters) and Lemmatized the remaining words. However, we
did not perform stemming or omit hyperlinks, as after initial ex-
periments, we concluded that stemming and omitting hyperlinks
from the text decreased the classification accuracy on the vali-
dation set. For validation, we performed a 75-25 split, i.e., sep-
arated 75% of the data for training our models and kept 25% of
the data for validation.

For the Logistic Regression and the Naive Bayes model, we
vectorized the comments by two different approaches: count vec-
tors and term frequency - inverse document frequency (TF-IDF).
Also, we experimented different n-grams for features. According
to our experiments, TF-IDF with unigrams achieved the most
accuracy among other methods, as discussed in detail in section
5.1.

4. Proposed Approach

We trained and evaluated several models, which are quite well-
known in the Machine Learning Literature including Bernoulli
Naive Bayes (described in Section 1.1), Logistic Regression,
Support Vector Machines, Decision Trees and k-nearest neigh-
bour classifiers. We also stacked these methods to build a new
model. Later, we also evaluated a Deep Learning model ULM-
FiT. The basics of these models are discussed briefly.

4.1. Logistic Regression

Logistic Regression is a probabilistic supervised learning algo-
rithm which learns a decision boundary between classes. It mod-
els the relative probabilities of the classes as the weighted linear
combination of input features i.e,

P(y = 1|x)
P(y = 0|x)

= θ̇T X.

The individual probability of classes are then calculated by ap-
plying the logistic function, the sigmoid function, to convert
them to probability scores for each class.

P(y = 1|x) = σ(θ′x).

Logistic Regression is a Discriminative model in that it directly
models the class probabilities. Learning in logistic Regression is
done using gradient descent optimization of log likelihood or the
cross entropy loss given by:

log(L(D)) =

n∑
i=1

yiσ(wT xi) + (1 − yi)(1 − σ(wT xi)).

Mini-Project 2, page 2 of 5

Nishant Mishra, Shubham Chopra and Aarash Feizi: Applied Machine Learning - Mini Project 2

4.2. Support Vector Machines

Support Vector Machines are a supervised non-probabilistic
binary linear classifier, i.e., it classifies data based on a deci-
sion boundary. For a given training dataset of the form ((x1,
y1),..,(xn, yn)), a hyperplane can be written as w.x − b = 0.
That is, we need to find the maximum-margin hyperplane that
divides the group of points xi for which yi = 1 from the group of
points for which yi=-1, which is defined so that the distance be-
tween the hyperplane and the nearest point xi from either group
is maximized.
For data that is linearly separable, for w distance between the
decision hyperplane and a point,

w.x − b >= 1, i f yi = 1.

w.x − b <= −1, i f yi = 0.

We can put this together to get the optimization problem:
"Minimize ||w|| subject to for yi(w.x - b) >= 1; i = 1,..,n."

For data that is not linearly separable, we define a hinge loss
function max(0, 1−yi(w.xi−b). Our problem then can be written
as a minimization problem, where we wish to minimize, such
that,

1
n

∑
i=1

n max(0, 1 − yi(w.xi − b) + λ(||w||2)

is minimum for the dataset. Here, the parameter λ determines
the trade-off between increasing the margin size and ensuring
that the xi lies on the correct side of the margin. Thus, for suf-
ficiently small values of λ, the second term in the loss function
will become negligible, and the SVM will make decisions simi-
lar to the hard boundary SVM.

4.3. k-Nearest Neighbours

k-Nearest Neighbours-based classification is a type of lazy learn-
ing: it does not attempt to construct a general internal model,
but simply stores instances of the training data. Classification
is computed from a simple majority vote of the nearest neigh-
bors of each point: a query point is assigned the data class which
has the most representatives within the nearest neighbors of the
point.

4.4. Stacking

Stacking is the process of combining the predictions of several
conceptually different base estimators built with a given learn-
ing algorithm, for improving robustness over a single estimator.
This can be achieved by using a majority vote or the average
predicted probabilities (soft vote) to predict the class labels for
a queried point. Such a stacked classifier can be useful for a set
of equally well performing models and balance out their individ-
ual weaknesses. In our experiments, we use a Soft Vote (average
the probabilities) of ’n’ different estimators to predict the class
labels.

4.5. Universal Language Model Fine-tuning (ULMFiT)

ULMFiT is a transfer learning approach in Natural Language
Processing where the key idea is to take a pre-trained language
model on a huge corpus, (in our case, Wikitext-103 corpus(103M
tokens)) and then fine-tune it on the downstream task data, such
as our Reddit comment data data in a discriminative way. Now

Table 1. Accuracy on Logistic Regression with different configurations.

Vector N-gram Remove Stop-words Accuracy
Count unigram Yes 53.67%
Count bigram Yes 53.49%

TF-IDF unigram Yes 54.19%
TF-IDF bigram Yes 52.71%
TF-IDF unigram No 54.23%
TF-IDF trigram Yes 51.64%

Table 2. Accuracy on Naive Bayes with different configurations.

Vector N-gram Remove Stop-words Accuracy
Count unigram Yes 54.64%
Count bigram Yes 53.91%

TF-IDF unigram Yes 56.16%
TF-IDF bigram Yes 55.53%
TF-IDF unigram No 55.86%
TF-IDF trigram Yes 55.2%

Table 3. Accuracy on SVM with different configurations.

Vector N-gram Remove Stop-words Accuracy
Count unigram Yes 53.4%
Count bigram Yes 53.1%

TF-IDF unigram Yes 55.23%
TF-IDF bigram Yes 55.61%
TF-IDF unigram No 55.37%
TF-IDF trigram Yes 55.41%

we used this fine tuned language model as the encoder for down-
stream tasks, Text Classification in our case. The classifier we
used with this encoder was a 3 layer LSTM model followed by
linear models with BatchNorm and dropout and corresponding
activations at each layer.

4.6. Dimensionality Reduction - Latent Semantic Analysis
(LSA)

Latent Semantic Analysis (LSA) is a technique in NLP, in par-
ticular distributional semantics, for analyzing relationships be-
tween a set of documents and the terms they contain by pro-
ducing a set of conceptual features related to the documents and
terms (S. Deerwester et. al, 1988 [14]). LSA is based on the
assumption that words close in meaning will occur in similar
pieces of the text (the distributional hypothesis). A matrix con-
taining word counts per paragraph (rows represent unique words
and columns represent each paragraph) is constructed from a
large piece of text and singular value decomposition (SVD) is
used to reduce the number of rows while preserving the similar-
ity structure among columns. Paragraphs are then compared by
taking the cosine of the angle between the two vectors formed
by any two columns. These feature values can be used to reduce
dimensions by pruning un-important features. Values close to 1
represent very similarity in paragraphs, while values close to 0
represent dissimilarity in paragraphs.

5. Results and Discussions

5.1. Analysis of different Feature Extraction Methods

For initial feature extraction, we used different Feature extraction
methods, namely Term Frequency-Inverse document frequency

Mini-Project 2, page 3 of 5

Mini-Project 2: Group 60

Table 4. Accuracy with different classifiers.

Classifier Hyper-Parameters Accuracy
Naive Bayes (Ours) Smoothing, α = 0.01 51.4%

Naive Bayes (sklearn) Smoothing, α = 0.01 57.52%
Logistic Regression Solver = lbfgs 56.54%

SVM Hinge Loss 57.61%
kNN k = 100 54.37%

ULMFiT Fine-Tuned 58.123%

Table 5. Run-Times of different classifiers.

Classifier Hyper-Parameters Run-Times
Naive Bayes (Ours) Smoothing, α = 0.01 9.43s

Naive Bayes (sklearn) Smoothing, α = 0.01 0.43s
Logistic Reg. Solver = lbfgs 18.45s

SVM Hinge Loss 5.78s
kNN k = 100 5.37s

ULMFiT 3+10 epochs > 2 hours

Table 6. Accuracy after feature reduction with LSA.

Classifier Features Hyper-Parameters Accuracy
Naive Bayes 5000 α = 0.01 51.0%
Naive Bayes 10000 α = 0.01 53.42%
Naive Bayes 25000 α = 0.01 54.52%
Logistic Reg 5000 Solver = lbfgs 52.678%
Logistic Reg 10000 Solver = lbfgs 53.74%

SVM 5000 Hinge Loss 52.61%
SVM 10000 Hinge Loss 53.56%
SVM 25000 Hinge Loss 54.34%
kNN 25000 k = 100 49.77%

(TF-IDF), and Binary Count Vectorizer. In addition to the pre-
processing described in Section 3, we tested different n-grams
for features, including uni, bi and tri-grams. The comparison
of validation set accuracy of these different approaches using
Bernoulli Naive Bayes Models, Logistic Regression and SVM is
shown in Tables 1, 2 and 3, respectively. As visible, we achieved
the best results using unigrams with the tf-idf vectorizer. Hence,
we continue to use these for the remaining tests in this report.

5.2. Analysis of different Machine Learning Models

We tested the models described in Section 4 on the dataset,
and analyzed the performance while fine-tuning the hyper-
parameters for each. The tabulated results for these analysis is
shown in Table 4.

5.2.1. Run-Times of tested Classifiers

The Run-Times of the classifiers tested are shown in Table 5. As
can be seen, — performs the fastest, but is the least accurate.
Also, ULMFiT achieves the highest accuracy of all, however,
takes several hours (4-5) to Fine-Tune.

5.2.2. Dimensionality Reduction with LSA

We use the Latent Semantic Analysis (LSA) technique as
described in Section 4.6, to reduce the number of dimen-
sions/features. Our intuition behind dimensionality reduction
was two-fold, (1) to decrease the run-times of the classifiers and
(2) to increase the accuracy by removing un-neccesary features

and retaining only features with good co-variance with the out-
put labels. However, as can be seen in Table 6, reducing the num-
ber of features results in compromising accuracy, although the
run-times are reduced.

5.3. Stacking - Models used for Kaggle Submission

While using Multinomial Naive Bayes with appropriate smooth-
ing function on tf-idf vectorizer carried us over the TA baseline
with 57.9% accuracy, but going beyond that was quite difficult
as most models would plateau somewhere near that value and
nominal increases demanded a lot of fine tuning. We observed
that the best results were obtained by stacking various combina-
tions of the models described above. For the final submission, we
used an ensemble classifier with ’soft’ voting by Stacking SVM,
Naive Bayes and Logistic Regression at their optimum parame-
ter settings.which gave an accuracy of 57.97% on our validation
data and 58.011% on kaggle public leaderboard. Adding ULM-
Fit to the stack and using a logistic regression on top as meta
classifier further bolstered the accuracy to 60.1%.

6. Conclusions

1. The amount of data per class was quite sparse and overall
the variance was high. Therefore most training models would
Plateau after a certain point (57-58%), as it becomes increas-
ingly difficult to model unique word-vector representations
and inter relations.

2. Statistical Machine Learning Models of Naive Bayes, Logis-
tic Regression and SVMs performed quite well. However,
techniques like TF-IDF are very elementary for encoding
text, as compared to the State of the Art in NLP, such as
word2vec,BERT and word vectors representation.

3. Deep Learning models such as ULMFiT pre-trained on large
available datasets helped in improved prediction accuracies.
Also, training an LSTM on top of ULMFiT helped the model
learn long-term dependencies in the text to further bolster the
accuracy.

4. Stacking provided a considerable boost in increasing the fi-
nal test accuracy. Individually, no model provided accuracy
greater than 59%. However, Stacking various models (LR,
Naive Bayes, SVM and ULMFiT) helped achieve an accu-
racy of 60.5% on the validation set and 60.077% on the the
Competition Test Set. Mostly stacking helps by taking the
strengths of all the models on various features.

7. 5. Future Work

More data points should be collected. Since, the per class data
was relatively small, Naive Bayes, Logistic Regression, SVMs
performed almost at par with complex Deep Learning models,
despite making assumptions on the data. However, more ad-
vanced word encoding methods, used by modern models like
BERT, (Devlin et al. []) and XLNet (Yang et al. []) should dra-
matically improve performance on the dataset. But most deep
learning algorithms are very data intensive. Techniques for better
feature selection should be researched. LSA did not help much
in this case, however, better feature selection and dimensionality
reduction techniques can help bolster the accuracy further.

Mini-Project 2, page 4 of 5

Nishant Mishra, Shubham Chopra and Aarash Feizi: Applied Machine Learning - Mini Project 2

8. 6. Statement of Contributions

This project is a collaborative effort between three team mem-
bers. The tasks were evenly distributed and every member con-
tributed equally.

References
[1] Howard, Jeremy, and Sebastian Ruder. (2018). "Universal language model fine-

tuning for text classification."
[2] Devlin, J., Chang, M. W., Lee, K., Toutanova, K. (2018). Bert: Pre-training of

deep bidirectional transformers for language understanding.
[3] Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., Le, Q. V. (2019).

XLNet: Generalized Autoregressive Pretraining for Language Understanding.
[4] Jin, Chi; Wang, Liwei (2012). Dimensionality dependent PAC-Bayes margin

bound. Advances in Neural Information Processing Systems.
[5] Yunlong Liang, Fandong Meng, Jinchao Zhang, Jinan Xu, Yufeng Chen and

Jie Zhou (2019). A Novel Aspect-Guided Deep Transition Model for Aspect
Based Sentiment Analysis.

[6] Chen Zhang, Qiuchi Li and Dawei Song. (2019). Aspect-based Sentiment Clas-
sification with Aspect-specific Graph Convolutional Networks.

[7] Kai Sun, Richong Zhang, Samuel Mensah, Yongyi Mao and Xudong Liu.
(2019). Aspect-Level Sentiment Analysis Via Convolution over Dependency
Tree.

[8] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, Luke S. Zettlemoyer. (2018) Deep contextualized word
representations, NAACL-HLT, 2018.

[9] Alexandra Chronopoulou, Christos Baziotis, Alexandros Potamianos.
(NAACL-HLT, 2019). An Embarrassingly Simple Approach for Transfer
Learning from Pretrained Language Models.

[10] Bryan McCann, James Bradbury, Caiming Xiong, Richard Socher Learned in
Translation: Contextualized Word Vectors, NIPS 2017.

[11] Cortes, Corinna; Vapnik, Vladimir N. (1995). "Support-vector networks"
(PDF). Machine Learning. 20 (3): 273–297.

[12] Kamran Kowsari, Kiana Jafari Meimandi, Mojtaba Heidarysafa, Sanjana
Mendu, Laura Barnes and Donald Brown. ICL, 2019. Text Classification Al-
gorithms: A Survey.

[13] Bo Liu. (2019). Anonymized BERT : An Augmentation Approach to the Gen-
dered Pronoun Resolution Challenge.

[14] Deerwester; Scott C. (Chicago, IL), Dumais; Susan T. (Berkeley Heights, NJ),
Furnas; George W. (Madison, NJ), Harshman; Richard A. (London, CA),
Landauer; Thomas K. (Summit, NJ), Lochbaum; Karen E. (Chatham, NJ),
Streeter; Lynn A. (Summit, NJ). Computer information retrieval using latent
semantic structure.

Mini-Project 2, page 5 of 5

