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Abstract

Multimodal learning with latent space models
has the potential to help learn deeper, more use-
ful representations that help getting better per-
formance, even in missing modality scenarios.
In this project we leverage latent space based
model to perform inference models and recon-
struction in all missing modality combinations.
We trained a Multimodal Variational Encoder
which uses a product of Experts based infer-
ence network on three different modalities con-
sisting of MNIST handwritten digit images in
two languages and spoken digit recordings for
our experiments. We trained the model in a
subsampled training paradigm using an ELBO
loss that comprised the modality reconstruction
losses, label cross-entropy loss as well as the
Kullback-Leibler divergence for the latent distri-
bution. We evaluated the total ELBO loss, indi-
vidual reconstruction losses, classification accu-
racy and visual reconstruction outputs as part
of our analysis. We observed encouraging re-
sults both in terms of successful convergence as
well as accurate reconstructions.

1. Introduction
Multimodal Learning involves learning complex, represen-
tations using multiple independent modalities of a data to be
able to solve a problem better. Multimodal Learning leads
to more generalizable representations for the kind of data or
task involving multiple forms. It has a number of applica-
tions such as Image Captioning, Visual Question Answering
etc.

The problem we set out to address in this project was to
train a latent variable based variational inference model on
multimodal data, and using it to train similar models with a
subset of the possible modalities in order to perform infer-
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ence with all possible combinations of missing modalities
provided as well as get a reconstruction of all modalities.

Such models can find application in a number of tasks. For
example such a model trained on Image, speech and corre-
sponding text transcripts as modalities when trained with
sufficient data can be used with an efficient video calling
application. Being trained to handle multiple combination
of modalities and perform in missing modality scenarios, it
will help reduce the bandwidth requirement of the video call
app, by eliminating the need to transmit the video stream
along with the associated audio and text modalities. We
could only send the latter two and the video/face can be
generated/reconstructed on the go using the model, hence
saving a lot in terms of data at both the sender and receiver
ends. Other applications could be in solving popular prob-
lems such as Image Captioning, Visual Question Answer-
ing, emotion recognition, inter-conversions among different
modalities, time series predictions when future data is miss-
ing etc.

Latent Variable based models are a very popular branch
of statistical modeling which rely on the mapping of input
observations to hidden or latent representations that can be
optimized for various tasks. Latent Variable models are
also popular for unsupervised learning based tasks such as
clustering, Principle Component Analysis.

Variational Autoencoders (Doersch, 2016) are generative
models that allow us to model a data from a latent distribu-
tion obtained from the observations. A VAE is trained by
optimizing a lower bound, an optimization technique called
Variational Inference.

For our project, we needed a model with latent represen-
tation to be able to store information from all modalities,
as well as generative properties for reconstruction of the
different modalities using the latent representation.

Hence we approached the missing modality reconstruction
and classification based problem using a Multimodal Varia-
tional Autoencoder(MVAE) inspired from the paper (Wu &
Goodman, 2018) Our model used a tree like graph where the
different modalities define the observation nodes. It consists
of parallel fully connected encoder and decoder networks
associated with each modality as part of a VAE and a prod-
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uct of experts technique for late fusion of the respective
latent distribution parameters from each encoder to get a
final representation. An additional linear decoder branch
was used for label classification.Each modality has its own
inference network. This model was trained by optimizing
an estimated lower bound (ELBO) on the marginal likeli-
hood of observed data, i.e reconstructions of the modalities
as well as the classification loss. We also used a sampling
based training scheme such that for each training example
containing modalities, we obtained the loss for all combi-
nations of modalities given to the model, this ensured the
learned model generalized to perform well in reconstructing
given any combination set of the modalities.

We used three modalities for experimentation and trained the
model on a MNIST dataset with images in two languages,
Farsi and Kannada as first two modalities and speech utter-
ances of the MNIST digits as the third modality. The model
performed well in terms of the convergence of ELBO loss,
individual reconstruction losses, classification accuracy as
well as the final visual reconstructions of the modalities. We
also performed various analyses in terms of hyperparameter
tuning, reconstruction under different modality combina-
tions as well as analysis of disentanglement of representa-
tion property.

All the steps, experiments and results have been discussed
in detail in the following sections of the report. Section
2 explores a bit of a background and highlights related
work in the domain, followed by a detailed description of
the Dataset we used in Section 3. Section 4 details the
methodology including the model architecture, the training
scheme as well as the various hyperparameters and design
choices. The results of our experiments are tabulated and
demonstrated in Section 5 along with detailed discussion of
these results followed by final conclusions and future work
in Sections 6 and 7 respectively.

2. Related Work
Application of Generative Models for Multimodal Learn-
ing is a popular area of focused research. Many different
variants of MVAEs have been used to train generative mod-
els of the form p(x2|x1), where x1 and x2 are different
modalities, such as Conditional Variational Autoencoders
(CVAEs) (Sohn et al., 2015) and conditional multi-modal
autoencoders (CMMA) (Pandey & Dukkipati, 2017). One
of the seminal works that forms a foundation for our project
was the concept of Multimodal Variational Autoencoders
(MVAEs) introduced in the paper Multimodal Generative
Models for Scalable Weakly-Supervised Learning (Wu &
Goodman, 2018). MVAE uses a product of experts based
inference network and a sub-sampled training paradigm
which enables it to generalize. It has shared parameters
across modalities in order to learn any combination of miss-

ing modalities.It was also shown to be highly effective in
weakly supervised learning.

Another recent work titled Factorized Inference in Deep
Markov Models for Incomplete Multimodal Time Series
(Zhi-Xuan et al., 2019) introduces a factorized inference
method for Multimodal Deep Markov Models (MDMMs).
It is a multimodal latent space variation of Hidden Markov
Models that is trained using a variational forward-backward
algorithm. It is capable of handling incompleteness in terms
of both temporal information as well as modalities.

Joint Multi-modal VAE (JMVAE) used in (Suzuki et al.,
2016) explicitly modeled the joint distribution p(x1, x2).
The JMVAE collectively trains the joint inference network
q(z|x1, x2) with two other inference networks q(z|x1) and
q(z|x2), to handle missing modality. It is inferior to MVAE
as it basically has an inference network for each subset of
modalities, which is computationally intractable for large
number of modalities.

Product of Experts used for the fusion of the distributions ob-
tained from all the individual inference networks to get the
final latent distribution is similar to a Restricted Boltzmann
machine (RBM), another latent variable model that has been
applied to multi-modal learning(Srivastava & Salakhutdi-
nov, 2014).

Apart from VAEs, Generative Adversarial Networks (GANs)
are also being adapted for multimodal representation learn-
ing or clustering(Pandeva & Schubert, 2019).

From application perspective MVAEs have been succesfully
applied to different tasks. (Khattar et al., 2019) utilised a
bimodal VAE for the task of fake news detection.

3. Data
For our experiments, we decided to use three modalities
and chose to use MNIST as our dataset. This was decided
based on both the computational complexity, availability as
well as the statistical complexity. MNIST acts as a suitable
dataset to test hypotheses on through experimentation. Our
three modalities were binary handwritten digit images in
Farsi, Binary Handwritten digit image in Kannada and Digit
speech recordings of the digits. As part of our training
pipeline, we made a random sampler that sampled triplets
corresponding to a giving label/digit from each of the three
modalities that acted as our training or test sample. Except
for the spoken data, the other datasets are sampled to form a
triplet without replacement because of class imbalance. We
obtained a training set of 60,000 unique triplets and training
and validation sets of 10,000 unique triplets each.
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3.1. MNIST Images- Multi-Language (m1, m2)

We decided to use binary images of MNIST digits 0− 9 in
different languages as our first two modalities. MNIST-MIX
(Jiang, 2020), an opensource multi-language handwritten
digit recognition dataset was used for this purpose. It is
a dataset of handwritten digits in 10 different languages
curated in the same format as the original MNIST dataset.
The 10 different languages have different number of
training and testing samples. We chose to go ahead with
Farsi and Kannada handwritten digits as two of our three
modalities for class balance and appropriate data sampling.
The details of the dataset are given in Table 1 and samples
shown in Figure 1. These images were normalized and then
flattened before being passed on for training.

Dataset Name Language Training Size Testing
Size

FARSI Farsi 60,000 20,000
Kannada-mnist Kannada 60,000 20,240

Table 1. Dataset list with training and testing sizes

Figure 1. Samples from handwritten digit dataset representing dig-
its 0-9

3.2. MNIST- Speech recording (m3)

As part of our third modality we used the Free Spoken
digit dataset. It is another open source dataset that contains
recordings of spoken digits in .wav format at 8kHz trimmed
to ensure minimal silence at the beginning and ending. It
contains a total of 3000 recordings, 50 utterances for each
individual digit by 6 different speakers, hence 300 record-
ings per digit. In order to use it for training our MVAE, we
preprocessed the speech data by converting these record-
ings to 13 dimensional Mel Frequency Cepstral Coefficients
(MFCC) feature vectors for better processing.

4. Methodology
4.1. Model Architecture

Taking inspiration from the model described in (Wu & Good-
man, 2018) we followed the model design of individual
encoders for each inputs as separate experts. The struc-
ture of the model follows a tree-structured graph where the
different modalities define the observation nodes. The en-
coding from the experts go through late fusion to combine

their individual information extracts. The decoders for label
classification and reconstruction use this bottle-neck as a
common point.

Figure 2. (a) Graphical model of the MVAE. (b) MVAE architec-
ture with N modalities. µi and σi represent the i-th variational
parameters; µ0 and σ0 represent the prior parameters. The product-
of-experts (PoE) combines all variational parameters (c) If a modal-
ity is missing during training, we drop the respective inference
network

4.1.1. LATE FUSION - ENCODING INPUTS WITH
EXPERTS

Each modality passed as input is processed by separate en-
coder models. The model structure of late fusion allows
many modalities to be added on later. Currently we have
three modalities consisting of two image modalities and
one for speech. Each encoder is supposed to return a la-
tent variable parameters of mean and log variance. These
latent variables are the compressed representation of each
modality.

4.1.2. FUSION TECHNIQUE - PRODUCT OF EXPERTS
(POE)

The fusing technique of taking the product of posteriors
as the joint posterior is possible due to the fact that the
modalities are independent of each other given the instance
of the digit they represent. This is also the supporting cause
for the tree structure of the model where each input modality
is the observation node.

p(z|x1, x2, ..., xN ) =
p(x1, ..., xN |z)p(z)

p(x1, ..., xN )

Since the modalities (x1, ..., xN ) are independent of each
other given the common representation of the digit as z,
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=⇒ p(z|x1, x2, ..., xN ) =
p(z)

p(x1, ..., xN )

N∏
i=1

p(xi|z)

=
p(z)

p(x1, ..., xN )

N∏
i=1

p(z|xi)p(xi)
p(z)

=

∏N
i=1 p(z|xi)∏N−1
i=1 p(z)

.

∏N
i=1 p(xi)

p(x1, ..., xN )

Ignoring the quotient term
∏N
i=1 p(xi)

p(x1,...,xN ) and approximating
p(z|xi) with q(z|xi) ≡ q̃(z|xi)p(z) where our inference
network model is q̃(z|xi).

=⇒ p(z|x1, ..., xN ) =

∏N
i=1 q̃(z|xi)p(z)∏N−1

i=1 p(z)

= p(z)

N∏
i=1

q̃(z|xi)

The joint posterior p(z|x1, ..., xN ) is calculated by taking
the product of individual experts. We assume that our prior
expert p(z) and our experts q̃(z|xi) are Gaussian. We use
the analytical solution and sampling with reparameterization
technique to get the latent ’z’.

As the number of modalities increase the information in
this latent representation densifies. Removing individual
modalities does not completely destroy the stability of the
latent. This advantage of the PoE favours our use case of re-
construction with missing modalities later during inference.

4.2. Training Scheme

4.2.1. LOSS OBJECTIVE AND METRICS OF EVALUATION

With our autoencoders and PoE in place, we had a good
enough setup for a structured model to process the inputs
well and decode to classify the label outcome with appropri-
ate reconstructions. To train this model with assurance of
retaining the important reconstruction features at the latent
state, we use a combination of ELBO losses.For training we
used a subsampling strategy where We define a powerset of
possible combinations of the input modalities. In general
we should have 2N − 1 combinations for N modalities. In
our case, with three modalities we had 7 such combina-
tions.For each combination we calculate the ELBO loss that
consists of reconstruction for all the modalities, label cross
entropy loss and the divergence between true and model
latent distribution, this aspect of training was different from
the MVAE paper (Wu & Goodman, 2018). This method
improves generalization of information at the latent and the
decoders for reconstruction of all given any set of combined

input. To this we add the classification objective loss in each
combination.

Loss =
∑

X∈P (x1,...,xN )

ELBO(X) + CE(label onehot)

where,ELBO(X) = Eqφ(z|X)[
∑
xi∈X

log pθ(xi|z)]

−KL[qφ(z|X)||p(z)]

For evaluating the reconstruction of the MNIST images
of binary values, the binary cross entropy was used. To
evaluate the speech 13 dimensional MFCC feature dense
vector we used the mean squared error. Since the label
classes of the digits were onehots, we used cross entropy
loss for it. Coefficients were provided to the reconstruction
losses to balance out the difference in the output ranges.
The ELBO losses for all 7 combinations of input modalities
for a given training sample (triplet) were added to get the
final training loss which was optimized.

ELBO(x1, . . . , xN ) +

N∑
i=1

ELBO(xi) +

k∑
j=1

ELBO(Xj)

Figure 3. Loss and Label Accuracy convergence

4.2.2. HYPERPARAMETERS AND DESIGN CHOICES

We trained the model with a latent variable of 512 dimen-
sions with a batch size of 128 using the Adam optimizer
with a learning rate of 10−3 for 500 epochs. The reconstruc-
tion loss of speech was given a coefficient of 100 while unity
for the image reconstructions. We used the swish activation
function (Ramachandran et al., 2017) with fully connected
linear layers as an alternative to ReLU with batchnormaliza-
tion. For the Linear layers for log variance, we initialized
the weights with zeros as a trick which solved the gradient
explosion problem while training.
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5. Results and Discussion
The accuracy of the different combinations are all close
to cent percent. In general the classification task is easily
solvable in the 3 datasets. As we add modalities the results
get better as expected. The advantage we discussed of PoE
for the use case of missing modality during inference not
effecting the model much can be seen in the results table 2
and reconstructions in figure 4.

Figure 4. Original Image and Image reconstruction outputs in vari-
ous combination of modalities. (Top: Farsi MNIST reconstruction),
(Bottom :Kannada MNIST reconstruction)

The reconstructions of the two MNIST are pretty convinc-
ing. In the cases when the respective modality which is
considered for reconstruction are missing in the input, the
cross entropy loss goes up but the visual inspection shows
that this is caused by blurry image reconstruction. The recre-
ated images evidently show the respective language MNIST.
From table 2 we can notice that the BCE for farsi recon-
struction without it being input goes as high as 348 while
for kannada it goes upto 135. The BCE for reconstruction
when their inputs being present are as low as 89 and 68
which is comparable. The reason for this 3 times shooting
in farsi compared to kannada when the respective modalities
are missing is because the scribes of farsi are thicker then

kannada. Thick scribes being blurred cause a higher loss.

Figure 5. Output Reconstructions obtained by perturbing index
201 of latent variable by amounts -1500 to 1500 in intervals of 30
shown in 10x10 grid. Output reconstruction transitions as [5,3,7,0],
original input label 7. (Top: Farsi), (Bottom :Kannada)

We also studied the disentanglement property of the latent
space representation. We perturbed the latent space at par-
ticular indices with varying noises, we observed a consistent
pattern of variations in reconstruction output of 2 different
reconstructions. We noticed that a very big noise value was
required to be added to bring changes in the reconstruction.
This shows that the representations are disentangled. In
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Combination Classification (Accuracy)(%) ELBO Reconstruction M1 (BCE) Reconstruction M2 (BCE) Reconstruction M3 (MSE)
m1 99.6 248.85 89.09 135 0.133
m2 99.7 436.9 348.67 68.96 0.134
m3 99.2 493.03 348.81 135.76 0.0095

m1, m2 99.93 187.64 89.05 69.04 0.133
m2, m3 99.94 427.44 346.19 69.1 0.011
m1, m3 99.88 239.11 89.33 134.8 0.013

m1, m2, m3 99.95 177.62 89.38 69.1 0.014

Table 2. Training performance at different combinations of the modalities and joint inference experts.
BCE: Binary Cross Entropy; MSE: Mean Squared Error; ELBO: Evidence Lower Bound; m1: MNIST Language 1 (Farsi); m2: MNIST
Language 2 (Kannada); m3: Spoken MNIST (MFCC features).

Figure 5 we used a perturbation noise in the range -1500
and 1500 to get 100 variation reconstructions of the farsi
and kannada MNIST for and input z corresponding to label
7. It was interesting to see the digits vary simultaneously
in both the reconstructions. This showed that the latent z
representation was disentangled and we found a variable
that could tune between the digits. We observe that the
model learns disentangled representations some of which
are modality agnostic.

6. Conclusion
We conclude that the late fusion model using PoE as the
fusion technique with the training scheme we were able to
converge the loss objective to solve the classification task
and reconstruction using multiple modality and even for
missing modality during inference time. The PoE and train-
ing scheme do work as expected as for a generalized setup
of different combination of input modalities. The recon-
struction is sharp and clear in presence of all the modalities
and gets blurry but still evident to show the MNIST digit as
we remove modalities. Not only does the latent representa-
tion of the MVAE capture important robust features, it also
learns to disentangle them some of which are even modality
agnostic.

7. Future Work
The model architecture could be improved with the usage
of CNNs as a replacement to Linear layers. Another model
improvement is to try in future is GANs instead of VAE in
the same multimodal setting.

The application of reconstructing missing modality in con-
versations would be interesting given the data modalities
of video, audio and text for primary tasks like emotion and
sentiment analysis. The current primary task of label clas-
sification is easily solved for the given modalities and so
analysing the differences due to addition of modality could
not be done. With complex modalities and complex tasks,
there would be added scope to do some studies there.
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