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Abstract

For many computer science sub-fields, knowledge graphs (KG) remain a constant
abstraction whose usefulness relies in their representation power. However, dy-
namic environments, such as the temporal streams of social media information,
brings a greater necessity of incorporating additional structures to KG’s. In this
project, we intend to apply currently available solutions to address incremental
knowledge graph embedding to several applications to test their efficiency. We also
propose to build an embedding model agnostic framework to make these models
incremental. Firstly, we propose a window-based incremental learning approach
that discards least happening facts and performs link prediction on updated triples.
Next, we present experiments on a GCN model-agnostic meta-learning based ap-
proach. Our best model is the Window-based KG Incremental Learning, where
edge representations, are calculated from subtraction of embedding vectors of head
and tail nodes.

1 Introduction

Knowledge bases store millions of facts about people, places, and events1. Many of them are also
generated and deployed online, in order to be used for question answering and information retrieval
by end users or third party companies, to provide service to their customers. With the exponential
increase of new information, and dynamic nature of many knowledge bases, maintenance and accurate
fact extraction is becoming a challenging task. Current knowledge bases are missing many links
between existing facts; thus, there is a constant need of adding new facts and updating old relations
[10].

Graphs are the main abstraction to represent facts in a well-formed sentence that involves a subject, a
predicate or relation, and an object in knowledge bases. This fact allows them to benefit from many
efficient graph algorithms to search, delete, and update facts. Recent efforts in applying machine
learning methods to graphs, can help mitigate current challenges of knowledge graphs (KG) with
dynamic graph structure, and improve application performance in an online environment. While
there exist numerous models to learn KG embeddings [8], they are mostly limited to static KGs and
cannot model an evolving KG, where new facts about the world are constantly added or updated.
New facts provide additional information about existing entities (new edges) in the KG and also may
provide added information about new entities (new nodes).

1Wikipedia is one of the main sources from which one can construct graph-like representations that encode
facts about the world.
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In this project, we apply different methods to a knowledge graph to learn accurate knowledge
representations as an output of a set machine learning methods. Our main constraint deals with
enforcing the proposed techniques to operate on dynamic graphs, that is, graphs whose set of vertices
and/or edges change over a (discrete) time interval.We focus on providing methodologies to obtain
representations (embeddings) for these new entities and also update the representations of existing
(old) entities that have received new facts.

1.1 Task Definition

Though obtaining new entity representations is the focus of the work, the primary task is still to
perform link prediction for KG completion. However, note that it is different from the conventional
KG completion task where the graph is static, and new facts/links are predicted only for a fixed set of
existing entities. Existing models cannot be used to obtain facts for entities that are not present in the
graph. The typical naive solution is to train the KG embedding model from scratch every time a new
set of facts arrive, which is computationally expensive with large graphs.

Hence, it is ideal to look forward to solutions where the old model can quickly adapt to new training
data without forgetting the information learned in the past. This is the classical problem of incremental
learning, which is also commonly referred to as continual learning and online learning [4]. We pose
the problem of continually incorporating facts about new entities in the KG model as an incremental
learning problem. Note that the parameters of the model are the embedding of entities themselves
and their relations.

Consider a directed graph G = (V,E) together with a set of labels L that serve to classify each
directed edge (s, o) ∈ E. In a general sense, there is a relation R ⊆ E × L that does such labeling.
In the knowledge graph (KG) jargon, and for simplicity in notation, we prefer to observe these data
as a set of related triplets (subject, relation, object) (or (s, r, o)) where s and o are graph
vertices called entities, while r is one of the corresponding labels for edge (s, o). Furthermore, the
set of triplets that characterize a KG is often called a facts set during application settings.

We formulate the problem of online learning on KGs as follows. At time-step, t+ 1, if Tt denotes
the facts set at t and Zt ∈ R|Et|∗d denote the embeddings for the entity set Et at t, then, the task is to
obtain embeddings, Zt+1 ∈ R|Et+1|∗d based on the new (updated) facts set, Tt+1. Note that, Tt+1−Tt
corresponds to the new facts added and Tt − Tt+1 corresponds to the deleted facts. We restrict the
scope of project to cases where |Et+1| > |Et| and to only one future prediction, i.e t ∈ {0, 1}.
We organize our report as follows. First, in Section 2, we provide the background on TransE, a
popular KG embedding model, and discuss a few other related works. Then, we formally pose the
Incremental KG embedding problem and discuss the proposed methodologies to solve the problem.
Then we provide the dataset and experiment details in Section 3 and 4 respectively and discuss the
observed results in Section 5. Finally, we conclude our report discussing our findings in detail in
Section 6, and note areas for future work.

2 Related Work

In this section we elaborate on some of the influential approaches taken recently to tackle the task
defined on Section 1.1. All of them have significantly gotten benefit from deep neural networks. On
the other hand, as the problem of online learning can be well formulated on alternative fields, such as
reinforcement learning [1], automated reasoning [5], and recommendation systems [12].

2.1 TransE

Several models and paradigms have been proposed in the literature to learn embeddings for KGs
[13] TransE [2] is used to learn embeddings for entities and relations of multi-relational KG data in
low-dimensional vector spaces. TransE models the embeddings by regarding a relation as translation
from head entity to tail entity - if (h, r, t) holds, then the embedding of the tail entity t should be close
to the embedding of the head entity h plus some vector that depends on the relationship r. The scoring
(energy) function for TransE is given by,

E(h, r, t) = ||h+ r − t||
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Given a training set S of triples (h, r, t), where h, t ∈ E (E is the set of entities) and r ∈ R (R is the
set of relations), the embeddings are learnt by minimizing a margin-based ranking criterion over the
training set.

L =
∑

(h,r,t)∈S

∑
(h′,r,t′)∈S′

(h′,r,t′)

[γ + d(h+ r, t)− d(h′ + r, t′)]+

where [x]+ denotes the positive part of x, γ > 0 is a margin hyper-parameter and S′(h′,r,t′) is the set
of corrupted triplets.

S′(h′,r,t′) = {(h
′, r, t)|h′ ∈ E} ∪ {(h, r, t′)|t′ ∈ E}

The set of corrupted triplets is composed by replacing either the head or tail entity with a random
entity. The loss function favors lower energy values for training triplets than for the corrupted ones.
This model requires reduced set of parameters as it learns only one low-dimensional vector for each
entity and each relationship. We used OpenKE’s 2 implementation for setting our model. For our task,
we made changes to the TransE model, so that it can learn the representations of the new entities.

2.2 Dynamic Knowledge Graph Embeddings

In [14] a context-aware Dynamic Knowledge Graph Embedding (DKGE) method is proposed. Their
contributions include two utilizing different embedding representations for entities and relations,
separately. The proposed architecture will aim to learn contextual subgraph embeddings that will
characterize a small neighborhood from a KG, via a deep GCN3 together with an attention mechanism
on vertex features. The appearance of such contextual embeddings is what effectively distinguishes
this approach with others, such as puTransE [11].

During the process of updating a knowledge graph. One of the major contributions of [14] was
to propose an incremental algorithm to learn better representations by only updating entities and
relations that were involved in adding/deleting operations, as well as, emerging entities. Such updates
are performed in proportion to the gradient of a margin-based loss function, defined as

L ≡
∑

(h,r,t)∈S

∑
(h′,r,t′)∈S′

max(0, f(h, r, t) + γ − f(h′, r, t′)) (1)

where S and S′ are the set of correct and incorrect triplets for an arbitrary KG, respectively; γ is
the margin; and f is a scoring function4.

2.3 Other Related works

In another earlier experiment we used transfer learning for the task of incremental learning of
Knowledge Graph embedding. It was done by finetuning the pre-trained embedding using new
data(triplets) involving the new nodes by freezing of relation embedding and embedding of old nodes
that are not the neighbour nodes of the new nodes instead of retraining from scratch. This training
was done using OpenKE for training TransE embeddings. This selective freezing of weight vectors
was done by changing the trainer model in OpenKE, setting a gradient mask that forces the gradients
of weights associated with these entities to be zero at each epoch. The results obtained are tabulated
in Table 1 along with results where no freezing of embedding was done. As can be observed from
the results transfer learning results in much faster training with very small loss in performance when
compared with the skyline performance i.e when the new knowledge graph is trained from scratch.

Another interesting approach to the presented task comes from the temporal setting, in which the
dynamics of a KG can be seen as an evolving phenomenon. In [6], the authors model the temporally
conditioned joint probability distribution for event sequences (KG updates) by presenting the novel
Recurrent Event Network (RE-Net). This is a discriminative model that uses a recurrent neural
network to approximate the probability P{st+1, rt+1, ot+1 | G:t} at current time step conditioned on
the preceding events. Such approach employs a probabilistic framework to predict the forthcoming
events based on previous observations.

2https://github.com/thunlp/OpenKE
3graph convolutional network
4An l1-norm is often used in this setup.
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Model MRR MR Hits@10 Hits@3 Hits@1

Fine-tuning TransE 0.2993 1872 0.5449 0.4801 0.1026

Fine-tuning TransE
- static relation
embeddings

0.3727 1387 0.5676 0.5148 0.2152

Skyline model
(Training from
scratch)

0.3959 1244 0.5678 0.4783 0.2815

Table 1: Evaluation results on TransE with different settings.

[8] provides a comprehensive review of the advances in representation learning for dynamic graphs.
The work points out that the literature on dynamic graphs is limited to only a few and that too only for
temporal graphs where new facts or added or old facts dropped in a KG with static number of entities.
The review also acknowledges the need for models that can learn representations for new entities.

The scarcity of models for incremental learning in KGs can be attributed to the complexity of
multi-relational graphs. Only in the recent past, embedding models for simple dynamic graphs have
surfaced. In the NLP side of research, [7] explored an incremental training strategy for training
word embeddings using skip-gram models. We adopt ideas from this paper for setting up our
incremental approach to dynamically upgrade the embedding dictionary and update the negative
sampling probability.

3 Dataset

Triples in
training

Triples in
validation

Triples in
testing

Triples in
test_zeroshot

No. of
Entities

No. of
Relations

4,83,142 50,000 59,071 31,078 19,970 1,345

Table 2: Statistics of FB20K dataset.

For this experiment we use multi-relational FB20K dataset and only consider relation for each triplet
(head, relation, tail) rather than node or edge attributes. Figure 1 shows a graph of 400K edges in
FB20K dataset. Freebase provides general facts of the world, and is an extensively used dataset
for knowledge completion tasks. We employed the FB20K dataset [15] for our task. In addition
to containing all the entities and relations from the FB15K dataset, this dataset also contains new
entities which was required for our setup. As a first step, we analyzed and visualized this dataset to
gain insights. The FB20K dataset contains 1,345 relations and 19,970 entities in total, out of which
14,951 are present in the training set. The test_zeroshot file contains all the new entities that are not
seen in the training data, while the test file contains the triples between the existing entities (e-e). The
zeroshot setting contains a total of 9,217 entities, from which 5,019 are the new ones. The triplets in
test_zeroshot can be split in three categories: (e-d), (d-e), and (d-d); where e stands for existing and d
stands for the new entities. (e-d) means a triple with an existing entity as its head and a new entity as
its tail, (e-d) implies that the tail is a new entity but the head is not, and (d-d) implies that both the
head and the tail are new entities. The statistics on the zero-shot setting are given in Table 2.

4 Proposed Approach

4.1 Window-based Knowledge Graph Incremental Learning

In this method, an initial set of directed edges and nodes, are chosen as a base for training a model
to capture structural information of a knowledge graph. Node and/or edge features created based
on the underlying graph structure. Frequently, nodes and edges represented as vectors in a lower
dimensional space using available algorithms or learned through a deep learning model [3]. These
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Figure 1: Visualization of the Freebase Graph

embeddings are used for training the base model to be used for prediction of new or missing facts. In
this method, Node2Vec based on Word2Vec is used to generate node embeddings.

Next, current snapshot of the graph is updated by replacing least occurring facts (less central nodes
& unconnected nodes). Embedding of new nodes are generated from this snapshot of the graph
and passed to our base model, to perform link prediction for these new facts. Good performance is
obtained when ratio of new to existing nodes is not greater than %15 of previous graph snapshot.
This is beneficial for online methods as there is no need to train a model from scratch with new data
arrival.

To create edge embedding vectors, we experiment with two methods:

1. Concatenating head and tail’s 128-dimensional Node2Vec embedding vectors to create
256-dimensional edge embedding

2. Subtracting head embedding from tail embedding vector to create 128-dimensional edge
embedding vector

For this experiment, link prediction is converted to a binary classification with 0 and 1 representing
link is present or absent respectively, with Random-Forest model for training and prediction. Also,
dataset is divided to training set and nine test sets as incremental updates, to generate 9 snapshots of
graph with each snapshot, adding new nodes and updating edges compare to previous graph snapshot.
Negative samples generated for each set equal to the number of existing edges in each set, where
shortest distance between nodes of each negative sample is greater than 2.
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4.2 GCN based

The second method we experimented with followed a model-agnostic meta-learning based approach
with Graph Convolutional Networks(GCN). The idea here is to learn a GCN to predict the embeddings
of new nodes given the old embeddings of its neighboring entities in the old graph and similarly
obtain an updated representation of old entities based on the recently learned embedding of new
entities. These two predictions are jointly iterated. This can be viewed as learning to learn problem
(meta-learning).

To train this model, we prepared multiple sets of 2 time-stamped graphs and learned a GCN to learn
embeddings for new entities when a new time-stamped graph set is provided. For data creation to feed
into our GCN model, we took the training data and removed entities from them in an incremental way
such that the entities removed do not affect the connectivity of the graph. We also ensured the number
of relations remains the same and that we don’t remove any entities which might be associated with
any relation more than 50% of the total triplets involving that relation.

Now the graph with entities removed was considered our old graph and embeddings were learnt
for this graph using triplets, and the graph with those entities as part of the data was considered
as new graph and trained its embeddings by keeping embeddings of all entities from the old graph
that are not in any way related to any of the new entities added in the new graph constant and the
rest(neighbours of new entities) along with the new entities trainable.

We froze them by making their gradients zero at every epoch during training. We also froze the
relationships as they remain the same. In this way we created 5 sets of data for training by removing
random sets of 1000 entities from the original training data in FB20k. So 4 out of the 5 such pairs of
old and new knowledge graphs without and with additional 1000 entities were to be used as training
data for our GCN, the other set being the validation set while the training data and the training data
appended with new entities in the test_zeroshot data in FB20k were to be used as test data.

The datasets prepared were in the form of an object file consisting of, the adjacency matrices of old
and new knowledge graphs, the relation-entity sparse adjacency matrix,the indices of new entities,
and the indices of neighbouring nodes of the new entity for each pair. This data was parsed and sent
to the GCN model for training. Although it is meant ot be model agnostic, we used the TransE model
here for our experiments.

5 Results

5.1 Window-based Knowledge Graph Incremental Learning

Precision, recall and F1 score are the commonly used metrics for binary classification. F1 score can be
interpreted as a weighted average of the precision and recall, where an F1 score reaches its best value
at 1 and worst score at 0 [9]. For this method, area under ROC curve and F1-score used for selecting
model parameters and evaluating of our model. Table 5.1 summarizes results of this experiment. We
observe that, base model which is trained using initial set only, predicts links with high confidence
for new sets (82% on average), however accuracy drops for snapshots with larger new nodes. Also,
as expected, edge features generated from subtracting head embedding from tail embedding vector,
performs better than concatenating head and tail embeddings. This could be explained by the way
nodes are mapped to low dimensional space. Node2Vec uses Word2Vec to generate low-dimensional
embedding vectors. When Word2Vec used for word embeddings, interesting results observed from
arithmetic operation on embedding vectors such as King + Woman - Man = Queen. Because our
classification problem attempts to predict existence of an edge from an embedding vector, head +
edge = tail or edge = tail - head, can better preserve direction of edges and differentiate between node
or edge entities. Figure 2 and 3 show Precision, Recall and ROC curve for one snapshot.
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Figure 2: Precision & Recall Matrix for Snapshot2

Edge size # New nodes Subtract-F1 Score Concat-F1 Score

Train set 290K 15K 87 % 87 %
Snapshot 0 50K 1497 78 % 69 %
Snapshot 1 10K 108 84 % 69 %
Snapshot 2 10K 32 84 % 67 %
Snapshot 3 10K 118 85 % 68 %
Snapshot 4 10K 18 83 % 69 %
Snapshot 5 10K 960 72 % 69 %
Snapshot 6 11583 40 90 % 75 %
Snapshot 7 18750 54 73 % 69 %
Snapshot 8 151 25 87 % 73 %

Table 3: Window-based KG Incremental Learning

5.2 GCN based

We also trained a GCN based model to learn an embedding-model agnostic approach for incremental
learning. The idea here is to learn a GCN to predict the embeddings of new nodes given the old
embeddings of it is neighboring entities in the old graph and similarly obtain an updated representation
of old entities based on the recently learned embeddings of new entities. These two predictions are
jointly iterated. After training the two layer GCN model on the custom training dataset using Mean
squared Error as the loss function, the model was evaluated using the output embeddings used in the
downstream task of link prediction to calculate hits@10. The hits@10 for validation set was a decent
0.27,but it failed to generalise to the test set and gave unsatisfactory results. More precisely it failed
at learning representations for new entities.

6 Discussion and Conclusions

Average performance of best model for Window-based KG Incremental Learning is 82% where edge
representation, is calculated from subtraction of embedding vectors of head and tail nodes. For future
experiment, we would like to extend this experiment by considering node/edge attributes and edge
weights which could improve accuracy and extend application to other KG tasks. Also, using a much
smaller training/update sets will be useful for a real-time online platform for link prediction and
product suggestion.

The model agnostic GCN based method failed to generalise to the new entities introduced in the
test set. The performance with validation set might be explained by the fact the even with random
sampling of 1000 entities,the model during training had seen a large percentage of the new entities
of the validation knowledge graph among the training data. Although we could not make the
GCN approach work, it remains a potentially and conceptually robust approach that needs further
experimentation, since it endeavors to be a model agnostic direct mapping based approach,which will
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Figure 3: ROC Curve for Snapshot2

considerably reduce the time required to derive embeddings for dynamically evolving graphs.Since it
is model agnostic,it will cater to the various different kinds of embedding.

All in all, the incremental learning of dynamic knowledge graphs remains an active field of interest
with a number of recent research being directed to address it. While it is imperative to work on
modeling this dynamic nature of knowledge graph to ensure fast and accurate embeddings are
generated, stress should also be given to find solutions that not only model new entities,but also
relations. More and more avenues need to be explored to ensure better models,like say, the need to
calculate embeddings of new nodes,but also update the old embeddings at higher level of hops from
the new nodes,not just immediate neighbours.

It is also a crucial problem to model the temporal nature of the evolution of facts over multiple time
steps. In our experiments we only dealt with entities and their relations, better performance can be
achieved by using adjunct information such as attributes of entities,facts etc for training.
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