
COMPUTER VISION
ASSIGNMENT 2

Nishant Mishra
260903177

1. The task associated with this problem was to generate levels in Gaussian Pyramid for a
given Image. A gaussian pyramid was generated by blurring the image with a gaussian
filter with sigma successively increasing by a factor of 2 and downsampling the image by
the same factor. 7 levels were generated with 𝝈 in range [1,64].

2. Using the gaussian pyramid constructed earlier , a Laplacian pyramid(Difference of

Gaussian) pyramid was created, where for each level in the Laplacian pyramid, we took
the difference of the image at the same level in Gaussian pyramid and an upsampled
version of image in the next level in the Gaussian pyramid. Since there were 7 levels in
the Gaussian pyramid, we get 6 levels in the Laplacian pyramid.

3. Now using the laplacian pyramid we had to obtain scale space extrema location. We
found local extremas in each level of the laplacian pyramid by taking a local area and
comparing the intensities in that local region for the same scale as well as the
adjacent(next and previous) levels in the pyramid as shown in figure 0. Two local
neighbourhood sizes(3*3,5*5) were tried. 3*3 gives 267 points Also a threshold was
specified in order to select only strong extremas, i.e minimum difference in
intensity>threshold. Different values of threshold produced different results as has been
summarised by the figures below

Figure 0​ Strategy for finding scale space extremas for 3*3 local neighbourhoods

Blue(Sigma=2),Green(Sigma=4),Yellow(Sigma=8),Red(Sigma=16) were used to denote
extremas at different scales

Figure1​ Keypoints on the image with neighbourhood=3*3 and threshold=3

Number of keypoints=267

Figure2​ Keypoints on the image with neighbourhood=5*5 and threshold=3

Number of keypoints=218

Figure3 ​Keypoints on the image with neighbourhood=3*3 and threshold=2

Number of keypoints=563

Figure4​ Keypoints on the image with neighbourhood=5*5 and threshold=2

Number of keypoints=444

4. Once the keypoint locations were found, sift feature descriptors were to be calculated.
For this, a patch of size 17*17 was taken around every keypoint location. Then gradient
magnitude and direction were calculated. If G​x​ and G​y ​are the gradients in x and y
direction respectively, then

||G||= (G​x​)​
2​+(G​y​)​

2√
And arg(G)=tan​-1​(G​y​/G​x​)
Then a gaussian mask of the same size as the neighbourhood i.e 17*17 was taken with

=4 and was used as a weighting mask over the Gradient magnitude matrix.N)/4σ = (− 1
MATLAB functions imgradient() was used for computing the gradient. The various
matrices for three random patches are shown below

5. Now these gradients were used for computing feature histogram or the histogram of
orientations of gradients. The histogram had 36 bins for every angle in 10 degree
intervals. Now for each patch a 36 dimensional feature vector was to be constructed
such that,for each point in the neighbourhood that had orientation in a bins range, the
corresponding Gaussian Weighted gradient magnitude was added to that bin in order to
construct the sift vector for a given keypoint location. Once this histogram was
calculated, the principle orientation of the vector was identified as the bin having the
largest value or peak and the sift vector was shifted counter clockwise such the principal
orientation became the first entry in the histogram vector, this is what makes the sift
vectors rotationally invariant as we derive canonical representations of the keypoints
irrespective of the rotation. The original and shifted histogram vectors are shown for the
three random points.

6. Now in order to test the robustness of sift vectors, the images were transformed in order

to match features. An arbitrary point near the center of the image was taken and the
image was rotated about the point and then it was scaled. Two instances are shown
below, the center was offset by 12pts from (512,512) to (500,500)

7. Once we have transformed the image, now a brute force feature matching was carried
out between the original and transformed image. In order to make the process simpler
and computationally less expensive, a smaller region of interest was taken from the
original image and the transformed image, the ROI taken was of size 512 around the
center the offset center. The two images were then passed through the whole pipeline of
steps above to calculate the sift feature vectors. Once these histogram vectors were
calculated for both the image, a similarity function was implemented to match the
vectors. This similarity vector is the Bhattacharya Coefficient given by

Where H​1​ and H​2​ are two given histograms.
Higher the coefficient, higher is the match between two histograms. Now while matching
a lot of noisy matches were recorded because of recurrent geometrical structure of the
image. Hence in order to avoid this , for each keypoint in the original image a local
neighbourhood around it was chosen in the transformed image in order to focus the
feature matching. The results obtained are shown below for the ROIs in two
transformormed images.

Figure​ Image showing matched features with Bhattacharya Coefficient>0.95 for

 rotation=5 and scaling=1.05

Figure​ Image showing feature matches for bhattacharya coefficient 0.9 to 0.95 in thin
 red lines and for bhattacharya coefficient >0.95 in yellow thick line for rotation=5
 degree and scaling =1.05

Figure​ Image showing feature matches for bhattacharya coefficient 0.85 to 0.95 in light

 blue lines, 0.9 to 0.95 in thin red lines and for bhattacharya coefficient >0.95 in
 yellow thick line for rotation=5 degree and scaling =1.05

Figure​ Image showing feature matches for bhattacharya coefficient 0.9 to 0.95 in thin

 red lines and for bhattacharya coefficient >0.95 in yellow thick line for
 rotation=12 degree and scaling =0.85

Figure​ Image showing feature matches for bhattacharya coefficient 0.85 to 0.95 in light

 blue lines, 0.9 to 0.95 in thin red lines and for bhattacharya coefficient >0.95 in
 yellow thick line for rotation=12 degree and scaling =0.85

8. The above feature matching technique is very primitive and brute force. It can however

be made much more robust by a number of strategies.
The matching is carried out in isolation, i.e all the feature vectors are matched
independently. A much more robust way of implementing would be to calculate pairwise
or groupwise distance estimates of keypoints that lie spatially close to each other. This is
because the relative positions of two points varies linearly or says same when
transformations like scaling or rotation is applied. Carrying out feature matching this way
will help alleviate the problem of noisy matches to distant yet similar keypoints on the

image for which we had to limit the neighbourhood around a keypoint, thus reducing
cases of false matches.
But carrying out this kind of feature matching assumes that the keypoints in both the
original and transformed images remains the same or pairs of keypoints co-occur in the
Image and no non linear transformation is introduced in the image, the external

 Environment such as lighting and noise in case of both the images remains same.

