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1. The task associated with this problem was to generate levels in Gaussian Pyramid for a 
given Image. A gaussian pyramid was generated by blurring the image with a gaussian 
filter with sigma successively increasing by a factor of 2 and downsampling the image by 
the same factor. 7 levels were generated with 𝝈 in range [1,64]. 

 

 



 
2. Using the gaussian pyramid constructed earlier , a Laplacian pyramid(Difference of 

Gaussian) pyramid was created, where for each level in the Laplacian pyramid, we took 
the difference of the image at the same level in Gaussian pyramid and an upsampled 
version of image in the next level in the Gaussian pyramid. Since there were 7 levels in 
the Gaussian pyramid, we get 6 levels in the Laplacian pyramid. 

 



3. Now using the laplacian pyramid we had to obtain scale space extrema location. We 
found local extremas in each level of the laplacian pyramid by taking a local area and 
comparing the intensities in that local region for the same scale as well as the 
adjacent(next and previous) levels in the pyramid as shown in figure 0. Two local 
neighbourhood sizes(3*3,5*5) were tried. 3*3 gives 267 points Also a threshold was 
specified in order to select only strong extremas, i.e minimum difference in 
intensity>threshold. Different values of threshold produced different results as has been 
summarised by the figures below 

 
Figure 0​ Strategy for finding scale space extremas for 3*3 local neighbourhoods 
 
 

 
 
 
 
 
 
 
 
 
 
 
 



Blue(Sigma=2),Green(Sigma=4),Yellow(Sigma=8),Red(Sigma=16) were used to denote 
extremas at different scales 

 
Figure1​ Keypoints on the image with neighbourhood=3*3 and threshold=3 

Number of keypoints=267 



 
Figure2​ Keypoints on the image with neighbourhood=5*5 and threshold=3 

Number of keypoints=218 



 

 
Figure3 ​Keypoints on the image with neighbourhood=3*3 and threshold=2 

Number of keypoints=563 



 
Figure4​ Keypoints on the image with neighbourhood=5*5 and threshold=2 

Number of keypoints=444 
 

4. Once the keypoint locations were found, sift feature descriptors were to be calculated. 
For this, a patch of size 17*17 was taken around every keypoint location. Then gradient 
magnitude and direction were calculated. If G​x​ and G​y ​are the gradients in x and y 
direction respectively, then 

||G||= (G​x​)​
2​+(G​y​)​

2√  
And arg(G)=tan​-1​(G​y​/G​x​) 
Then a gaussian mask of the same size as the neighbourhood i.e 17*17 was taken with 

=4 and was used as a weighting mask over the Gradient magnitude matrix.N )/4σ = ( − 1  
MATLAB functions imgradient() was used for computing the gradient. The various 
matrices for three random patches are shown below 



         



 
 

5. Now these gradients were used for computing feature histogram or the histogram of 
orientations of gradients. The histogram had 36 bins for every angle in 10 degree 
intervals. Now for each patch a 36 dimensional feature vector was to be constructed 
such that,for each point in the neighbourhood that had orientation in a bins range, the 
corresponding Gaussian Weighted gradient magnitude was added to that bin in order to 
construct the sift vector for a given keypoint location. Once this histogram was 
calculated, the principle orientation of the vector was identified as the bin having the 
largest value or peak and the sift vector was shifted counter clockwise such the principal 
orientation became the first entry in the histogram vector, this is what makes the sift 
vectors rotationally invariant as we derive canonical representations of the keypoints 
irrespective of the rotation. The original and shifted histogram vectors are shown for the 
three random points. 



     



 
 

 
6. Now in order to test the robustness of sift vectors, the images were transformed in order 

to match features. An arbitrary point near the center of the image was taken and the 
image was rotated about the point and then it was scaled. Two instances are shown 
below, the center was offset by 12pts from (512,512) to (500,500) 





 
 

7. Once we have transformed the image, now a brute force feature matching was carried 
out between the original and transformed image. In order to make the process simpler 
and computationally less expensive, a smaller region of interest was taken from the 
original image and the transformed image, the ROI taken was of size 512 around the 
center the offset center. The two images were then passed through the whole pipeline of 
steps above to calculate the sift feature vectors. Once these histogram vectors were 
calculated for both the image, a similarity function was implemented to match the 
vectors. This similarity vector is the Bhattacharya Coefficient given by 

 



 
Where H​1​ and H​2​ are two given histograms. 
Higher the coefficient, higher is the match between two histograms. Now while matching  
a lot of noisy matches were recorded because of recurrent geometrical structure of the 
image. Hence in order to avoid this , for each keypoint in the original image a local 
neighbourhood around it was chosen in the transformed image in order to focus the  
feature matching. The results obtained are shown below for the ROIs in two 
transformormed images. 

 
Figure​ Image showing matched features with Bhattacharya Coefficient>0.95 for 

                                               rotation=5 and scaling=1.05 



Figure​ Image showing feature matches for bhattacharya coefficient 0.9 to 0.95 in thin 
                                             red lines and for bhattacharya coefficient >0.95 in yellow thick line for rotation=5 
                                             degree and scaling =1.05 



 
Figure​ Image showing feature matches for bhattacharya coefficient 0.85 to 0.95 in light 

                                             blue lines,  0.9 to 0.95 in thin red lines and for bhattacharya coefficient >0.95 in 
                                             yellow thick line for rotation=5 degree and scaling =1.05 
 



 
Figure​ Image showing feature matches for bhattacharya coefficient 0.9 to 0.95 in thin 

                                             red lines and for bhattacharya coefficient >0.95 in yellow thick line for 
                                             rotation=12 degree and scaling =0.85 
 



 
Figure​ Image showing feature matches for bhattacharya coefficient 0.85 to 0.95 in light 

                                             blue lines,  0.9 to 0.95 in thin red lines and for bhattacharya coefficient >0.95 in 
                                             yellow thick line for rotation=12 degree and scaling =0.85 

 
8. The above feature matching technique is very primitive and brute force. It can however 

be made much more robust by a number of strategies. 
The matching is carried out in isolation, i.e all the feature vectors are matched 
independently. A much more robust way of implementing would be to calculate pairwise 
or groupwise distance estimates of keypoints that lie spatially close to each other. This is 
because the relative positions of two points varies linearly or says same when 
transformations like scaling or rotation is applied. Carrying out feature matching this way 
will help alleviate the problem of noisy matches to distant yet similar keypoints on the 



image for which we had to limit the neighbourhood around a keypoint, thus reducing 
cases of false matches.  
But carrying out this kind of feature matching assumes that the keypoints in both the 
original and transformed images remains the same or pairs of keypoints co-occur in the 
Image and no non linear transformation is introduced in the image, the external 

 Environment such as lighting and noise in case of both the images remains same. 
 


