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Abstract

Knowledge graphs (KGs) succinctly represent
real-world facts as multi-relational graphs. A
plethora of work exists in embedding the infor-
mation in KG to a continuous vector space in
order to obtain new facts and facilitate multi-
ple down-stream NLP tasks. Despite the pop-
ularity of the KG embedding problem, to the
best of our knowledge, we find that no ex-
isting work handles dynamic/evolving knowl-
edge graphs that incorporates facts about new
entities. In this project, we propose this prob-
lem as an incremental learning problem and
propose solutions to obtain representations for
new entities and also update the representa-
tions of old entities that share facts with these
newer entities. We build our solutions with
TransE as our base KG embedding model and
evaluate the learned embeddings on facts asso-
ciated with these new entities.

1 INTRODUCTION

Numerous Knowledge Graphs (KGs) are a means
of accessible sources for real-world facts that pro-
vide information about different entities and their
relationships with each other. A fact in a KG is
represented by a triplet, (h, r, t), which denotes
that a head entity, h is related to a tail entity, t
by the relation, r. Numerous NLP models ben-
efit from incorporating external information from
these KGs. In order to effectively use KGs for var-
ious machine learning-based NLP tasks, it is es-
sential to vectorize the information in KGs. This
involves learning continuous representations for
the entities and relations in a KG such that the
data manifold of the learned representations pre-
serves the inherent neighborhood structure of the
KG. While there exist numerous models to learn
KG embeddings (Kazemi et al., 2019), they are
limited to static KGs and cannot model an evolv-
ing KG, where new facts about the world are con-
stantly added or updated. New facts provide ad-
ditional information about existing entities (new
edges) in the KG and also may provide added in-
formation about new entities (new nodes). In this

project, we focus on providing methodologies to
obtain representations (embeddings) for these new
entities and also update the representations of ex-
isting (old) entities that have received new facts.

Though obtaining new entity representations is
the focus of the work, the primary task is still to
perform link prediction for KG completion. How-
ever, note that it is different from the conventional
KG completion task where the graph is static, and
new facts/links are predicted only for a fixed set of
existing entities. Existing models cannot be used
to obtain facts for entities that are not present in
the graph. The typical naive solution is to train the
KG embedding model from scratch every time a
new set of facts arrive, which is computationally
expensive with large graphs.

Hence, it is ideal to look forward to solutions
where the old model can quickly adapt to new
training data without forgetting the information
learned in the past. This is the classical problem
of incremental learning, which is also commonly
referred to as continual learning and online learn-
ing (Chen and Liu, 2016). We pose the problem of
continually incorporating facts about new entities
in the KG model as an incremental learning prob-
lem. Note that the parameters of the model are the
embedding of entities themselves and their rela-
tions. Thus, the problem is more than learning a
mere prediction function to obtain representations
for new entities, but it also requires to update rep-
resentations of existing entities that are related to
the new entities with minimal gradient updates.

The primary motive of this setup is to avoid
relearning the knowledge graph embedding al-
together with the occurrence of every new set
of facts (triplets). To this aim, we formulated
two solutions; the first approach followed a fine-
tuning based transfer-learning solution, and the
second followed a model-agnostic meta-learning
based approach with Graph Convolutional Net-
works (GCN). While our model-specific fine-
tuning approach fared well, the proposed model-
independent approach failed to learn representa-
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tions for a new entity. Owing to space constraints,
herein this report, we only discuss the results of a
fine-tuning based Incremental learning approach.

We organize our paper as follows. First, in Sec-
tion 2, we provide the background on TransE, a
popular KG embedding model, and discuss a few
other related works. Then, we formally pose the
Incremental KG embedding problem and discuss
the proposed methodologies to solve the problem.
Then we provide the dataset and experiment de-
tails in Section 4 and discuss the observed results
in Section 5. Finally, we conclude our report dis-
cussing our findings in detail in Section 6, and note
areas for future work.

2 RELATED WORK

Several models and paradigms have been pro-
posed in the literature to learn embeddings for
KGs (Wang et al., 2017). Herein we build over
the popular, TransE, a translation based model.

2.1 Background on TransE
TransE (Bordes et al.) is used to learn embeddings
for entities and relations of multi-relational KG
data in low-dimensional vector spaces. TransE
models the embeddings by regarding a relation as
translation from head entity to tail entity - if (h,
r, t) holds, then the embedding of the tail entity
t should be close to the embedding of the head
entity h plus some vector that depends on the re-
lationship r. The scoring (energy) function for
TransE is given by,

E(h, r, t) = ||h+ r − t||

Given a training set S of triples (h, r, t), where
h, t ∈ E (E is the set of entities) and r ∈ R (R is
the set of relations), the embeddings are learnt by
minimizing a margin-based ranking criterion over
the training set.

L =
∑

(h,r,t)∈S

∑
(h′,r,t′)∈S′

(h′,r,t′)

[γ+d(h+r, t)−d(h′+r, t′)]+

where [x]+ denotes the positive part of x, γ > 0 is
a margin hyperparameter and S′(h′,r,t′) is the set of
corrupted triplets.

S′(h′,r,t′) = {(h
′, r, t)|h′ ∈ E}∪{(h, r, t′)|t′ ∈ E}

The set of corrupted triplets is composed by re-
placing either the head or tail entity with a random
entity. The loss function favors lower energy val-
ues for training triplets than for the corrupted ones.

This model requires reduced set of parameters as
it learns only one low-dimensional vector for each
entity and each relationship. We used OpenKE’s
1 implementation for setting our model. For our
task, we made changes to the TransE model, so
that it can learn the representations of the new en-
tities.

2.2 Other related works

TransE works well in modelling 1-to-1 relations,
but the performance is unsatisfactory in case of
modelling 1-to-N, N-to-1, and N-to-N relation-
ships. To overcome this, (Wang et al., 2014)
proposed TransH, which models the relations as
hyper-planes with translation operations on them.
TransE and TransH project the entities and rela-
tions in the same semantic space. (Lin et al.,
2015) proposed TransR to build entity and relation
embeddings in separate entity space and relation
spaces. (Xie et al., 2016) introduced a representa-
tion learning based approach to learn embeddings
for both entities and relations in a common vector
space using triplets as well as additional semantic
information in the form of entity description.

(Kazemi et al., 2019) provides a comprehensive
review of the advances in representation learning
for dynamic graphs. The work points out that the
literature on dynamic graphs is limited to only a
few and that too only for temporal graphs where
new facts or added or old facts dropped in a KG
with static number of entities. The review also
acknowledges the need for models that can learn
representations for new entities and that there is
no existing work that focuses in this setup though
this is natural in the real-world.

The scarcity of models for incremental learn-
ing in KGs can be attributed to the complex-
ity of multi-relational graphs. Only in the re-
cent past, embedding models for simple dynamic
graphs have surfaced. In the NLP side of research,
(Kaji et al) explored an incremental training strat-
egy for training word embeddings using skip-gram
models. We adopt ideas from this paper for set-
ting up our incremental approach to dynamically
upgrade the embedding dictionary and update the
negative sampling probability.

3 Experiment Details

In this section, we elaborate on the dataset and ex-
perimental setup used in our project.

1https://github.com/thunlp/OpenKE



Triples in
training

Triples in
validation

Triples in
testing

Triples in
test zeroshot

No. of
Entities

No. of
Relations

4,83,142 50,000 59,071 31,078 19,970 1,345

Table 1: Statistics of FB20K dataset.

3.1 Dataset setup

Freebase provides general facts of the world, and
is an extensively used dataset for knowledge com-
pletion tasks. We employed the FB20K dataset
(Xie et al., 2016) for our task. In addition to
containing all the entities and relations from the
FB15K dataset, this dataset also contains new en-
tities which was required for our setup. As a first
step, we analyzed and visualized this dataset to
gain insights. The statistics of the dataset are given
in Table 1.

The FB20K dataset contains 1,345 relations and
19,970 entities in total, out of which 14,951 are
present in the training set. The test zeroshot file
contains all the new entities that are not seen in
the training data, while the test file contains the
triples between the existing entities (e-e). The ze-
roshot setting contains a total of 9,217 entities,
from which 5,019 are the new ones. The triplets in
test zeroshot can be split in three categories: (e-d),
(d-e), and (d-d); where e stands for existing and d
stands for the new entities. (e-d) means a triple
with an existing entity as its head and a new entity
as its tail, (e-d) implies that the tail is a new entity
but the head is not, and (d-d) implies that both the
head and the tail are new entities. The statistics on
the zero-shot setting are given in Table 2.

e-d d-e d-d
Triplets 11,880 19,047 151
Total Entities 7,916 9,176 110
New Entities 4,155 5,012 110

Table 2: Statistics of test zeroshot.

The original FB20K dataset was proposed for
Zero-shot learning setup where the data for learn-
ing representations for new entities did not have
any new edges and the model leverage textual
information about the entities to learn represen-
tations. To adapt this data to our setup where
we don’t leverage any additional side information
such as text and leverage only limited edge/facts
of new entities.

For the task of incremental learning of knowl-

edge graph embeddings on new entities, we took
the whole training data, and obtained embedding
using TransE. We split the facts in test zeroshot
data into two sets such that both the set had the
same set of new entities (4,427) and removed all
entities which had only one fact associated with
them. We used one for obtaining embeddings for
new entities and the other for evaluating their per-
formance.

3.2 Evaluation

We evaluate the models for link prediction, which
aims to predict the missing h or t for a relation fact
(h, r, t). For each missing entity, we rank the a set
of candidate entities from the KG, rather than pre-
dicting just the best candidate. In testing phase,
for each test triple (h, r, t), we replace the head/tail
entity by all entities in the knowledge graph, and
rank these entities in descending order of similar-
ity scores calculated by score function. We used
the Mean Rank of correct entities, and the pro-
portion of correction entities in top-K ranked en-
tities (Hits@K) measures as our evaluation metric
(Lin et al., 2015). A good link predictor should
achieve lower mean rank or higher Hits@K. We
conduct experiments on the FB20K dataset, and
compute the MR, Mean Reciprocal Rank (MRR),
Hits@1, Hits@3, and Hits@10 to compare the
performance of the models.

3.3 Skyline Model

In order to comprehend the performance of the
proposed models, we compare the model against
TransE trained from scratch on the entire training
data and the observed facts of new entities, i.e,
first set prepared from test zeroshot. The model
is evaluated for discovering the remaining facts in
the second triplet set. The aim of the proposed the
models discussed next is to close the gap in per-
formance achieve this skyline performance.

4 Proposed Work

4.1 Problem of Incremental Learning

We formulate the problem of Incremental learning
on KGs as follows. At time-step, t + 1, if Tt de-



notes the facts set at t and Zt ∈ R|Et|∗d denote
the embeddings for the entity set Et at t, then, the
task is to obtain embeddings, Zt+1 ∈ R|Et+1|∗d

based on the new (updated) facts set, Tt+1. Note
that, Tt+1−Tt corresponds to the new facts added
and Tt − Tt+1 corresponds to the deleted facts.
We restrict the scope of project to cases where
|Et+1| > |Et| and to only one future prediction,
i.e t ∈ {0, 1} as we don’t intend to capture the
temporal dynamics.

4.2 Incremental learning via fine-tuning

We setup our problem as that of fine-tuning exist-
ing knowledge graph embeddings upon introduc-
tion of new entities. Therefore, with the introduc-
tion of new entities, new facts are added which
need to be assigned a suitable representation in the
same space as the entities and relations in the old
graph. Not only this, addition of new nodes also
affects the embeddings of entities associated with
them. So, we intended to solve the problem of effi-
ciently extrapolating our knowledge graph embed-
dings to accommodate new entities being added
without having to be retrained from scratch. One
of the important assumptions with this was that no
new relation was being added.

We began by training a base model on the train-
ing data, on the 14,951 entities and 1,345 relations
and saved the embeddings. We used the OpenKE
toolkit (Han et al., 2018) for training TransE em-
beddings. The model took 1,000 iterations to con-
verge to an optimum loss on the given triplets. The
implementation of TransE uses the ’bern’ strategy
for negative sampling introduced in (Wang et al.,
2014) by corrupting entities and relations to obtain
negative samples.

Once we had our base embeddings, we pro-
ceeded to fine-tune it to the new entities. We used
the first set of test zeroshot triplets as our training
data for fine-tuning. Since no new relations were
added, we froze the weights associated with rela-
tion embedding in the base model. Since we want
to get the new node embeddings and the updated
representation of old nodes associated with them,
we found the neighbor nodes of the new nodes in-
troduced according to the new triplets, which was
basically the set of all old entities related to a new
node. We froze the weights of all the entities that
are not one of the new nodes or their neighbor
in order to speed up the training. This selective
freezing of weight vectors was done by changing

the trainer model in OpenKE, setting a gradient
mask that forces the gradients of weights associ-
ated with these entities to be zero at each epoch.
Then, the pre-trained model with partially frozen
weights was trained on the new triplets using the
same strategy. It was allowed to learn for 2,000
epochs to converge.

We also fine-tuned a version of the pre-trained
model without freezing any of the weights for
the relations or the neighboring entities, it did
not perform as well as the one with frozen weights.

4.3 Incremental learning via Meta learning

We also trained a GCN based model to learn
an embedding-model agnostic approach for incre-
mental learning. The idea here is to learn a GCN to
predict the embeddings of new nodes given the old
embeddings of it is neighboring entities in the old
graph and similarly obtain an updated representa-
tion of old entities based on the recently learned
embedding of new entities. These two predictions
are jointly iterated. This can be viewed as learn-
ing to learn problem (meta-learning). While the
model was able to learn to update embeddings of
old entities, it failed at learning representations for
new entities, i.e. the training loss did not reduce
to a satisfactory level. To train this model, we pre-
pared multiple sets of 2 time-stamped graphs and
learned a GCN to learn embeddings for new en-
tities when a new time-stamped graph set is pro-
vided. The code for this model is also submitted.

5 RESULTS

We gauge the effectiveness of the proposed In-
cremental learning approaches with the TransE
model, under three different experimental settings.
a) the computationally inefficient, skyline, that
trains from scratch, b) fine-tuning all the weights
on the new facts, and c) fine-tuning only entity em-
beddings associated directly with the facts of new
entities. The results are tabulated in Table: 3.

Among the fine-tuning approaches, the model
that freezes the relation embedding and fine-tunes
only the entities is superior to the other model
that fine-tunes the relation embedding too. The
gap in performance among them narrows down
with relaxed higher hits@k rates. The poor per-
formance of the later model despite tuning the re-
lation embeddings can be attributed to the reason
that other entities embeddings may no more be re-



Model MRR MR Hits@10 Hits@3 Hits@1

Fine-tuning TransE 0.2993 1872 0.5449 0.4801 0.1026

Fine-tuning TransE
- static relation
embeddings

0.3727 1387 0.5676 0.5148 0.2152

Skyline model
(Training from
scratch)

0.3959 1244 0.5678 0.4783 0.2815

Table 3: Evaluation results on TransE with different settings.

lated to each other by the updated translation vec-
tors. Thus by preserving/fixing the relation vec-
tors, the first model outperforms the later though
it takes a little longer to converge, as shown in the
convergence plots, Figure: 1.

In comparison to the skyline, our best-
performing fine-tuning model significantly outper-
forms the skyline on Hits@3 with very less com-
pute time. Our model achieves comparable perfor-
mance on Hits@10 and MRR metric while faring
poorly on the stricter Hits@1. The time taken for
fine-tuning the pre-trained models was 13 minutes
for 1,000 epochs on GPU, which is considerably
faster than the time taken for training the model
from scratch for the same number of epochs (56
minutes) for nearly equivalent results.

6 Conclusions

• We formulated the problem of updating KG
embeddings with new facts as an Incremental
learning problem and suggested two paradigms
of solution approaches to solve this problem,
i.e., fine-tuning and meta-learning.

• We experimentally showed the effectiveness of
incrementally learning the embeddings to be
computationally efficient to learn from scratch
without comprising heavily on the performance.

• We observed that fine-tuning only the associated
old entities and keeping the relation embeddings
intact is necessary to avoid forgetting old facts.

• Though our current attempts at solving with
meta-learning were not successful, we believe
this is the right way to solve this problem, pri-
marily to obtain model-agnostic solutions.

• Apart from the clearly visible scope for perfor-
mance improvement (hits@1) for the setup with

Figure 1: Loss plot for fine-tuning pre-trained model a)
without frozen weights, b)with frozen weights.

only past graph state (embedding), it is also a
crucial problem to model the temporal nature
of the evolution of facts over multiple timesteps
and also extend the model to incorporate new
relations.

7 STATEMENT OF CONTRIBUTIONS

This project is a collaborative effort by all three
team members. The work was evenly distributed
and completed with utmost sincerity and honesty.
Each member contributed equally throughout the
project.
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